
Tool Interface Standard (TIS)
Formats Specification for Windows

Version 1.0

TIS Committee
February 1993

The TIS Committee grants you a non-exclusive, worldwide, royalty-free license to use the information disclosed in the
Specifications to make your software TIS-compliant; no other license, express or implied, is granted or intended hereby.

The TIS Committee makes no warranty for the use of these standards.

THE TIS COMMITTEE SPECIFICALLY DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, AND ALL LIABILITY,
INCLUDING CONSEQUENTIAL AND OTHER INDIRECT DAMAGES, FOR THE USE OF THE SPECIFICATIONS AND
THE INFORMATION CONTAINED IN IT, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY
RIGHTS. THE TIS COMMITTEE DOES NOT ASSUME ANY RESPONSIBILITY FOR ANY ERRORS THAT MAY APPEAR
IN THE SPECIFICATIONS, NOR ANY RESPONSIBILITY TO UPDATE THE INFORMATION CONTAINED IN THEM.

The TIS Committee retains the right to make changes to these specifications at any time without notice.

Intel is a registered trademark and i386 and Intel386 are trademarks of Intel Corporation and may be used only to identify
Intel products.

Microsoft, Microsoft C, MS, MS-DOS, and XENIX are registered trademarks and Windows is a trademark of Microsoft
Corporation.

IBM is a registered trademark and OS/2 is a trademark of International Business Machines Corporation.

Phoenix is a registered trademark of Phoenix Technologies, Ltd.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.

All other brand and product names are trademarks or registered trademarks of their respective holders.

Additional copies of this manual can be obtained from:

Intel Corporation
Literature Center
P.O. Box 7641
Mt. Prospect, IL 60056-7641

Or call: 1-800-548-4725

Refer to Intel Order Number 241597.

Introduction

This Tool Interface Standards Formats Specification for Windows, Version 1.0 is the result of the work
of the TIS Committee--an association of members of the microcomputer industry formed to work toward
standardization of the software interfaces visible to development tools for 32-bit Intel X86 operating
environments. Such interfaces include object module formats, executable file formats, and debug record
information and formats.

The goal of the committee is to help streamline the software development process throughout the
microcomputer industry, currently concentrating on 32-bit operating environments. To that end, the
committee has developed two specifications--one for file formats that are portable across leading industry
operating systems and another describing formats for 32-bit Windows operating systems. These
specifications will allow software developers to standardize on a set of binary interface definitions that
extend across multiple operating environments and reduce the number of different interface
implementations that currently must be considered in any single environment. This should permit
developers to spend their time innovating and adding value instead of recoding or recompiling for yet
another tool interface format.

TIS Committee members include representatives from Borland International Corporation, IBM
Corporation, Intel Corporation, Lotus Corporation, MetaWare Corporation, Microsoft Corporation, The
Santa Cruz Operation, and WATCOM International Corporation. PharLap Software Incorporated and
Symantec Corporation also participated in the specification definition efforts.

TIS Portable Formats Specification, Version 1.0 and TIS Formats Specification for Windows, Version
1.0 are the first deliverables of the TIS Committee. They are based on existing, proven formats in
keeping with the TIS Committee's goal to adopt, and when necessary, extend existing standards rather
than invent new ones.

Within the Formats Specification for Windows are definitions for both loadable and debug formats. The
following table shows which standards are included and the source of each:

Tool Interface Type Tool Interface Format Industry Source
Loadable PE (Portable Executable) Microsoft Corporation
Debug MS Symbol and Type Information Microsoft Corporation

These, in conjunction with the portable formats, represent the tool interfaces currently agreed upon by
TIS Committee members as TIS standards. In the future, the Committee expects to work on
standardization efforts for tool interfaces in other areas that will benefit the microcomputer software
industry, such as dump file formats, object mapping, and 64-bit operating environments.

Tool Interface Standards (TIS) Formats Specification for Windows i
Version 1.0

Table of Contents

I. Portable Executable (PE) Format)

II. Microsoft Symbol and Type Information

Tool Interface Standards (TIS) Formats Specification for Windows iii
Version 1.0

I

Portable Executable (PE) Format

TIS Formats Specification for Windows, Version 1.0
Portable Executable (PE) Format

The following document is provided by Microsoft Corporation as a definition of the Portable Executable
Format (PE). PE is the native executable format for the Microsoft Windows NT 32-bit operating system.
The TIS Committee formed a subcommittee to evaluate the widely available formats with the objective
of adopting one as the TIS standard. After studying many different executable formats, the committee
recommended PE as a loadable information format standard for Windows environments.

No technical modifications have been made by the TIS committee. All information contained herein is
provided and controlled by Microsoft Corporation.

Portable Executable Formats

TABLE OF CONTENTS

1.0 Overview.. 1
2.0 PE Header .. 2
3.0 Object Table... 8
4.0 Image Pages ... 10
5.0 Exports... 11

5.1 Export Directory Table.. 11
5.2 Export Address Table .. 12
5.3 Export Name Table Pointers.. 13
5.4 Export Ordinal Table... 13
5.5 Export Name Table ... 13

6.0 Imports... 14
6.1 Import Directory Table.. 15
6.2 Import Lookup Table... 16
6.3 Hint-Name Table... 16
6.4 Import Address Table .. 17

7.0 Thread Local Storage ... 18
7.1 Thread Local Storage Directory Table... 18
7.2 Thread Local Storage CallBack Table ... 19

8.0 Resources... 20
8.1 Resource Directory Table .. 20
8.2 Resource Example... 23

9.0 Fixup Table .. 26
9.1 Fixup Block... 26

10.0 Debug Information ... 28
10.1 Debug Directory ... 28

Portable Executable Format

1.0 OVERVIEW
DOS 2.0 Compatible EXE

Header
Unused

OEM Identifier
OEM Info

Offset to PE Header
DOS 2.0 Stub Program &

Relocation Information
Unused

PE Header
(aligned on 8-byte boundary)

Object Table
Image Pages

import info
export info
fixup info

resource info
debug info

Figure 1. A Typical 32-bit Portable EXE File Layout

Tool Interface Standards (TIS) Formats Specification for Windows 1
Version 1.0

Portable Executable Format

2.0 PE HEADER

SIGNATURE STAMP CPU TYPE # OBJECTS
TIME/DATE STAMP RESERVED
RESERVED NT HDR SIZE FLAGS
RESERVED LMAJOR LMINOR RESERVED
RESERVED RESERVED
ENTRYPOINT RVA RESERVED
RESERVED IMAGE BASE
OBJECT ALIGN FILE ALIGN
OS MAJOR OS MINOR USER MAJOR USER MINOR
SUBSYS MAJOR SUBSYS MINOR RESERVED
IMAGE SIZE HEADER SIZE
FILE CHECKSUM SUBSYSTEM DLL FLAGS
STACK RESERVE SIZE STACK COMMIT SIZE
HEAP RESERVE SIZE HEAP COMMIT SIZE
RESERVED # INTERESTING RVA/SIZES
EXPORT TABLE RVA TOTAL EXPORT DATA SIZE
IMPORT TABLE RVA TOTAL IMPORT DATA SIZE
RESOURCE TABLE RVA TOTAL RESOURCE DATA SIZE
EXCEPTION TABLE RVA TOTAL EXCEPTION DATA SIZE
SECURITY TABLE RVA TOTAL SECURITY DATA SIZE
FIXUP TABLE RVA TOTAL FIXUP DATA SIZE
DEBUG TABLE RVA TOTAL DEBUG DIRECTORIES
IMAGE DESCRIPTION RVA TOTAL DESCRIPTION SIZE
MACHINE SPECIFIC RVA MACHINE SPECIFIC SIZE
THREAD LOCAL STORAGE RVA TOTAL TLS SIZE

Figure 2. The PE Header

Notes:

• A VA is a virtual address that is already biased by the Image Base found in the PE
Header. An RVA is a virtual address that is relative to the Image Base.

• An RVA in the PE Header that has a value of zero indicates the field isn’t used.

• Image pages are aligned and zero padded to a File Align boundaries. The bases of all
other tables and structures must be aligned on DWORD (4 byte) boundaries. Thus, all
VA’s and RVA’s must be on a 32-bit boundary. All table and structure fields must be
aligned on their “natural” boundaries, with the possible exception of the Debug Info.

SIGNATURE BYTES = DB * 4

Current value is “PE/0/0” ; PE is followed by two zeros (nulls).

2 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

CPU TYPE = DW CPU Type

This field specifies the type of CPU compatibility required by this image to run. The values
are:

Value CPU Type

0000h Unknown

014Ch 80386

014Dh 80486

014Eh PentiumTM

0162h MIPS Mark I (R2000, R3000)

0163h MIPS Mark II (R6000)

0166h MIPS Mark III (R4000)

OBJECTS = DW

Number of object entries. This field specifies the number of entries in the Object Table.

TIME/DATE STAMP = DD

Used to store the time and date the file was created or modified by the linker.

NT HDR SIZE = DW

This is the number of remaining bytes in the NT header that follows the Flags field.

FLAGS = DW

Flag bits for the image. The flag bits have the following definitions:

Flag Bit Definition

0000h Program image

0002h Image is executable.
If this bit isn’ t set, then it indicates that either errors were
detected at link time or that the image is being incrementally
linked and therefore can’ t be loaded.

0200h Fixed.
Indicates that if the image can’ t be loaded at the Image Base
then do not load it.

2000h Library image

LMAJOR/LMINOR = DB

The major/minor version number of the linker.

Tool Interface Standards (TIS) Formats Specification for Windows 3
Version 1.0

Portable Executable Format

ENTRYPOINT RVA = DD

Entrypoint relative virtual address. The address is relative to the Image Base. The address
is the starting address for program images and the library initialization and library
termination address for library images.

IMAGE BASE = DD

The virtual base of the image. This will be the virtual address of the first byte of the file
(DOS Header). This must be a multiple of 64K.

OBJECT ALIGN = DD

The alignment of the objects. This must be a power of 2 between 512 and 256M inclusive.
The default is 64K.

FILE ALIGN = DD

Alignment factor used to align image pages. The alignment factor (in bytes) used to align
the base of the image pages and to determine the granularity of per-object trailing zero pad.
Larger alignment factors will cost more file space; smaller alignment factors will impact
demand load performance, perhaps significantly. Of the two, wasting file space is
preferable. This value should be a power of 2 between 512 and 64K inclusive.

OS MAJOR/MINOR = DW

The OS version number required to run this image.

USER MAJOR/MINOR # = DW

User major/minor version number. This is useful for differentiating between revisions of
images/dynamic linked libraries. The values are specified at link time by the user.

SUBSYS MAJOR/MINOR # = DW

Subsystem major/minor version number.

IMAGE SIZE = DD

The virtual size (in bytes) of the image.
This includes all headers. The total image size must be a multiple of Object Align.

HEADER SIZE = DD

Total header size. The combined size of the DOS Header, PE Header and Object Table.

FILE CHECKSUM = DD

Checksum for entire file. Set to zero by the linker.

4 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

SUBSYSTEM = DW

NT subsystem required to run this image. The values are:

0000h - Unknown

0001h - Native

0002h - Windows GUI

0003h - Windows Character

0005h - OS/2 Character

0007h - POSIX Character

DLL FLAGS = DW

Indicates special loader requirements. This flag has the following bit values:

0001h - Per-Process Library Initialization

0002h - Per-Process Library Termination

0004h - Per-Thread Library Initialization

0008h - Per-Thread Library Termination

All other bits are reserved for future use and should be set to zero.

STACK RESERVE SIZE = DD

Stack size needed for image. The memory is reserved, but only the Stack Commit Size is
committed. The next page of the stack is a ‘guarded page.’ When the application hits the
guarded page, the guarded page becomes valid, and the next page becomes the guarded
page. This continues until the Reserve Size is reached.

STACK COMMIT SIZE = DD

Stack commit size.

HEAP RESERVE SIZE = DD

Size of local heap to reserve.

HEAP COMMIT SIZE = DD

Amount to commit in local heap.

INTERESTING VA/SIZES = DD

Indicates the size of the VA/Size array that follows.

Tool Interface Standards (TIS) Formats Specification for Windows 5
Version 1.0

Portable Executable Format

EXPORT TABLE RVA = DD

Relative Virtual Address (RVA) of the Export Table. This address is relative to the Image
Base.

IMPORT TABLE RVA = DD

Relative Virtual Address of the Import Table. This address is relative to the Image Base.

RESOURCE TABLE RVA = DD

Relative Virtual Address of the Resource Table. This address is relative to the Image Base.

EXCEPTION TABLE RVA = DD

Relative Virtual Address of the Exception Table. This address is relative to the Image Base.

SECURITY TABLE RVA = DD

Relative Virtual Address of the Security Table. This address is relative to the Image Base.

FIXUP TABLE RVA = DD

Relative Virtual Address of the Fixup Table. This address is relative to the Image Base.

DEBUG TABLE RVA = DD

Relative Virtual Address of the Debug Table. This address is relative to the Image Base.

IMAGE DESCRIPTION RVA = DD

Relative Virtual Address of the description string specified in the module definition file.

MACHINE SPECIFIC RVA = DD

Relative Virtual Address of a machine-specific value. This address is relative to the Image
Base.

TOTAL EXPORT DATA SIZE = DD

Total size of the export data.

TOTAL IMPORT DATA SIZE = DD

Total size of the import data.

6 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

TOTAL RESOURCE DATA SIZE = DD

Total size of the resource data.

TOTAL EXCEPTION DATA SIZE = DD

Total size of the exception data.

TOTAL SECURITY DATA SIZE = DD

Total size of the security data.

TOTAL FIXUP DATA SIZE = DD

Total size of the fixup data.

TOTAL DEBUG DIRECTORIES = DD

Total number of debug directories.

TOTAL DESCRIPTION SIZE = DD

Total size of the description data.

MACHINE SPECIFIC SIZE = DD

A machine-specific value.

Tool Interface Standards (TIS) Formats Specification for Windows 7
Version 1.0

Portable Executable Format

3.0 OBJECT TABLE
The number of entries in the Object Table is supplied by the # Objects field in the PE
Header. Entries in the Object Table are numbered starting from one. The Object Table
immediately follows the PE Header. The code and data memory object entries are in the
order chosen by the linker. The virtual addresses for objects must be assigned by the linker
such that they are in ascending order and adjacent, and must be a multiple of Object Align
in the PE header.

Each Object Table entry has the following format:

OBJECT NAME
VIRTUAL SIZE RVA

PHYSICAL SIZE PHYSICAL OFFSET
RESERVED RESERVED
RESERVED OBJECT FLAGS

Figure 3. Object Table

OBJECT NAME = DB * 8

Object name. This is an eight-byte, null-padded ASCII string representing the object name.

VIRTUAL SIZE = DD

Virtual memory size. The size of the object that will be allocated when the object is loaded.
Any difference between Physical Size and Virtual Size is zero filled.

RVA = DD

Relative Virtual Address. This is the virtual address that the object is currently relocated to
relative to the Image Base. Each Object’s virtual address space consumes a multiple of
Object Align (power of 2 between 512 and 256M inclusive. The default is 64K.), and
immediately follows the previous Object in the virtual address space (the virtual address
space for an image must be dense).

PHYSICAL SIZE = DD

Physical file size of initialized data. The size of the initialized data in the file for the object.
The physical size must be a multiple of the File Align field in the PE Header, and must be
less than or equal to the Virtual Size.

PHYSICAL OFFSET = DD

Physical offset for the object’s first page. This offset is relative to the beginning of the EXE
file, and is aligned on a multiple of the File Align field in the PE Header. The offset is used
as a seek value.

8 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

OBJECT FLAGS = DD

Flag bits for the object. The object flag bits have the following definitions:

Object Flag Bit Definition

000000020h Code object

000000040h Initialized data object

000000080h Uninitialized data object

040000000h Object must not be cached

080000000h Object is not pageable

100000000h Object is shared

200000000h Executable object

400000000h Readable object

800000000h Writeable object

All other bits are reserved for future use and should be set to zero.

Tool Interface Standards (TIS) Formats Specification for Windows 9
Version 1.0

Portable Executable Format

4.0 IMAGE PAGES
The Image Pages section contains all initialized data for all objects. The seek offset for the
first page in each object is specified in the Object Table and is aligned on a File Align
boundary. The objects are ordered by the RVA. Every object begins on a multiple of
Object Align.

10 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

5.0 EXPORTS
A typical file layout for the export information follows:

DIRECTORY TABLE

ADDRESS TABLE

NAME POINTER TABLE

ORDINAL TABLE

NAME STRINGS

Figure 4. Export File Layout

5.1 Export Directory Table
The export information begins with the Export Directory Table which describes the
remainder of the export information. The Export Directory Table contains address
information that is used to resolve fixup references to the entry points within this image.

EXPORT FLAGS
TIME/DATE STAMP

MAJOR
VERSION

MINOR
VERSION

NAME RVA
ORDINAL BASE
EAT ENTRIES

NAME POINTERS
ADDRESS TABLE RVA

NAME POINTER TABLE RVA
ORDINAL TABLE RVA

Figure 5. Export Directory Table Entry

EXPORT FLAGS = DD

Currently set to zero.

TIME/DATE STAMP = DD

Time/Date the export data was created.

Tool Interface Standards (TIS) Formats Specification for Windows 11
Version 1.0

Portable Executable Format

MAJOR/MINOR VERSION = DW

A user settable major/minor version number.

NAME RVA = DD

Relative virtual address of the DLL ASCII Name. This is the address relative to the Image
Base.

ORDINAL BASE = DD

First valid exported ordinal. This field specifies the starting ordinal number for the Export
Address Table for this image. Normally set to 1.

EAT ENTRIES = DD

Indicates number of entries in the Export Address Table.

NAME PTRS = DD

This indicates the number of entries in the Name Pointer Table (and parallel Ordinal Table).

ADDRESS TABLE RVA = DD

Relative virtual address of the Export Address Table. This address is relative to the Image
Base.

NAME TABLE RVA = DD

Relative virtual address of the Export Name Table Pointers. This address is relative to the
beginning of the Image Base. This table is an array of RVA’s with #Names entries.

ORDINAL TABLE RVA = DD

Relative virtual address of Export Ordinals Table Entry. This address is relative to the
beginning of the Image Base.

5.2 Export Address Table
The Export Address Table contains the address of exported entrypoints and exported data
and absolutes. An ordinal number is used to index the Export Address Table. The Ordinal
Base must be subtracted from the ordinal number before indexing into this table.

12 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

Export Address Table entry formats are described as follows:

EXPORTED RVA (DWORD)

Figure 6. Export Address Table Entry

EXPORTED RVA = DD

Export address. This field contains the relative virtual address of the exported entry
(relative to the Image Base).

5.3 Export Name Table Pointers
The Export Name Table pointers array contains an address into the Export Name Table.
The pointers are 32-bits each, and are relative to the Image Base. The pointers are ordered
lexically to allow binary searches.

5.4 Export Ordinal Table
The Export Name Table Pointers and the Export Ordinal Table form two parallel arrays,
separated to allow natural field alignment. The export ordinal table array contains the
Export Address Table ordinal numbers associated with the named export referenced by
corresponding Export Name Table Pointers.

The ordinals are 16-bits each, and already include the Ordinal Base stored in the Export
Directory Table.

5.5 Export Name Table
The Export Name Table contains optional ASCII names for exported entries in the image.
These tables are used with the array of Export Name Table Pointers and the array of Export
Ordinals to translate a procedure name string into an ordinal number by searching for a
matching name string. The ordinal number is used to locate the entry point information in
the Export Address Table.

Import references by name require the Export Name Table Pointers table to be binary
searched to find the matching name, then the corresponding Export Ordinal Table is known
to contain the entry point ordinal number. Import references by ordinal number provide the
fastest lookup because searching the name table is not required.

Each name table entry has the following format:

ASCII STRING (Zero Terminated)

Figure 7. Export Name Table Entry

ASCII STRING = DB

ASCII String. The string is case sensitive and is terminated by a null byte.

Tool Interface Standards (TIS) Formats Specification for Windows 13
Version 1.0

Portable Executable Format

6.0 IMPORTS
A typical file layout for the import information follows:

DIRECTORY TABLE

NULL DIR ENTRY

DLL 1 LOOKUP TABLE

NULL

DLL 2 LOOKUP TABLE

NULL

DLL 3 LOOKUP TABLE

NULL

HINT - NAME TABLE

DLL 1 ADDRESS TABLE

NULL

DLL 2 ADDRESS TABLE

NULL

DLL 3 ADDRESS TABLE

NULL

Figure 8. Import File Layout

14 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

6.1 Import Directory Table
The import information begins with the Import Directory Table which describes the
remainder of the import information. The Import Directory Table contains address
information that is used to resolve fixup references to the entry points within a DLL image.
The Import Directory Table consists of an array of Import Directory Entries, one entry for
each DLL this image references. The last directory entry is empty (Null) which indicates the
end of the directory table.

An Import Directory Entry has the following format:

IMPORT FLAGS

TIME/DATE STAMP

MAJOR VERSION MINOR VERSION

NAME RVA

IMPORT LOOKUP TABLE RVA

IMPORT ADDRESS TABLE RVA

Figure 9. Import Directory Entry

IMPORT FLAGS = DD

Currently set to zero.

TIME/DATE STAMP = DD

Time/Date the import data was pre-snapped or zero if not pre-snapped.

MAJOR/MINOR VERSION = DW

The major/minor version number of the DLL being referenced.

NAME RVA = DD

Relative virtual address of the DLL ASCII Name. This is the address relative to the Image
Base.

IMPORT LOOKUP TABLE RVA = DD

This field contains the address of the start of the Import Lookup Table for this image. The
address is relative to the beginning of the Image Base.

IMPORT ADDRESS TABLE RVA = DD

This field contains the address of the start of the import addresses for this image. The
address is relative to the beginning of the Image Base.

Tool Interface Standards (TIS) Formats Specification for Windows 15
Version 1.0

Portable Executable Format

6.2 Import Lookup Table
The Import Lookup Table is an array of ordinal or hint/name RVA’s for each DLL. The last
entry is empty (Null) which indicates the end of the table.

The last element is empty.

31 0

0 ORDINAL #/ HINT-NAME TABLE RVA

Figure 10. Import Address Table Format

ORDINAL/HINT-NAME TABLE RVA = 31-bits (mask = 7fffffffh)

Ordinal Number or Name Table RVA. If the import is by ordinal, this field contains a 31-
bit ordinal number. If the import is by name, this field contains a 31-bit address relative to
the Image Base to the Hint-Name Table.

O = 1-bit (mask = 80000000h) Import by ordinal flag

00000000h - Import by name

80000000h - Import by ordinal

6.3 Hint-Name Table
The Hint-Name Table format follows:

HINT (WORD) ASCII STRING (Zero Terminated) Pad

Figure 11. Import Hint-Name Table

The Pad field is used to obtain word alignment for the next entry.

HINT = DW

Hint into Export Name Table Pointers. The hint value is used to index the Export Name
Table Pointers array, allowing faster by-name imports. If the hint is incorrect, then a binary
search is performed on the Export Name Pointer Table.

ASCII STRING = DB

ASCII String. The string is case sensitive and is terminated by a null byte.

PAD = DB

Zero pad byte. A trailing zero pad byte appears after the trailing null byte if necessary to
align the next entry on an even boundary.

The loader overwrites the Import Address Table when loading the image with the 32-bit
address of the import.

16 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

6.4 Import Address Table
The Import Address Table is an array of addresses of the imported routines for each DLL.
The last entry is empty (Null) which indicates the end of the table.

Tool Interface Standards (TIS) Formats Specification for Windows 17
Version 1.0

Portable Executable Format

7.0 THREAD LOCAL STORAGE
Thread Local Storage (TLS) is a special contiguous block of data. Each thread will gets its
own block upon creation of the thread.

The file layout for thread local storage follows:

DIRECTORY TABLE

TLS DATA

INDEX VARIABLE

CALLBACK ADDRESSES

Figure 12. Thread Local Storage Layout

7.1 Thread Local Storage Directory Table
The Thread Local Storage Directory Table contains address information that is used to
describe the rest of TLS.

The Thread Local Storage Directory Table has the following format:

START DATA BLOCK VA

END DATA BLOCK VA

INDEX VA

CALLBACK TABLE VA

Figure 13. Thread Local Storage Directory Table

START DATA BLOCK VA = DD

Virtual address of the start of the Thread Local Storage data block.

END DATA BLOCK VA = DD

Virtual address of the end of the Thread Local Storage data block.

INDEX VA = DD

Virtual address of the index variable used to access the Thread Local Storage data block.

CALLBACK TABLE VA = DD

Virtual address of the Callback Table.

18 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

7.2 Thread Local Storage CallBack Table
The Thread Local Storage Callbacks is an array of the Virtual Address of functions to be
called by the loader after thread creation and thread termination. The last entry is empty
(NULL) which indicates the end of the table.

The Thread Local Storage CallBack Table has the following format:

FUNCTION1 VA (DWORD)
FUNCTION2 VA (DWORD)

....
NULL

Figure 14. Thread Local Storage CallBack Table

Tool Interface Standards (TIS) Formats Specification for Windows 19
Version 1.0

Portable Executable Format

8.0 RESOURCES
Resources are indexed by a multiple level binary-sorted tree structure. The overall design
can incorporate 2**31 levels; however, NT uses only three: the highest is Type, then Name,
then Language.

A typical file layout for the resource information follows:

RESOURCE DIRECTORY

RESOURCE DATA

Figure 15. Resource File Layout

The Resource directory is made up of the following tables.

8.1 Resource Directory Table

 RESOURCE FLAGS
 TIME/DATE STAMP

 MAJOR VERSION MINOR VERSION
 # NAME ENTRY # ID ENTRY

 RESOURCE DIR ENTRIES

Figure 16. Resource Table Entry

RESOURCE FLAGS = DD

Currently set to zero.

TIME/DATE STAMP = DD

Time/Date the resource data was created by the resource compiler.

MAJOR/MINOR VERSION = DW

A user settable major/minor version number.

20 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

NAME ENTRY = DW

The number of name entries. This field contains the number of entries at the beginning of
the array of directory entries which have actual string names associated with them.

ID ENTRY = DW

The number of ID integer entries. This field contains the number of 32-bit integer IDs as
their names in the array of directory entries.

The resource directory is followed by a variable length array of directory entries. # Name
Entry is the number of entries at the beginning of the array that have actual names
associated with each entry. The entries are in ascending order, case insensitive strings. # ID
Entry identifies the number of entries that have 32-bit integer IDs as their name. These
entries are also sorted in ascending order.

This structure allows fast lookup by either name or number, but for any given resource entry
only one form of lookup is supported, not both. This is consistent with the syntax of the .RC
file and the .RES file.

The array of directory entries have the following format:

 31 0
NAME RVA/INTEGER ID

E DATA ENTRY RVA/SUBDIR RVA

Figure 17. Resource Directory Entry

INTEGER ID = DD

ID. This field contains an integer ID field to identify a resource.

NAME RVA = DD

Name RVA address. This field contains a 31-bit address relative to the beginning of the
Image Base to a Resource Directory String Entry.

E = 1-bit (mask 80000000h) Unescape bit.

This bit is zero for unescaped Resource Data Entries.

DATA RVA = 31-bits (mask 7fffffffh) Data entry address

This field contains a 31-bit address relative to the beginning of the Image Base to a
Resource Data Entry.

E = 1-bit (mask 80000000h) Escape bit.

This bit is 1 for escaped Subdirectory Entry.

Tool Interface Standards (TIS) Formats Specification for Windows 21
Version 1.0

Portable Executable Format

DATA RVA = 31-bits (mask 7fffffffh) Directory entries

This field contains a 31-bit address relative to the beginning of the Image Base to
Subdirectory Entry.

Each resource directory string entry has the following format:

LENGTH UNICODE STRING
LENGTH UNICODE STRING

Figure 18. Resource Directory String Entry

LENGTH = DW

Length of string.

UNICODE STRING = DW

Unicode String. All of these string objects are stored together after the last Resource
Directory Entry and before the first resource data object. This minimizes the impact of
these variable length objects on the alignment of the fixed size directory entry objects. The
length needs to be word aligned.

Each Resource Data Entry has the following format:

DATA RVA
SIZE
CODEPAGE
RESERVED

Figure 19. Resource Data Entry

DATA RVA = DD

Address of Resource Data. This field contains the 32-bit virtual address of the resource data
(relative to the Image Base).

SIZE = DD

Size of Resource Data. This field contains the size of the resource data for this resource.

CODEPAGE = DD

Code page.

22 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

RESERVED = DD

Reserved. It must be zero.

Each resource data entry describes a leaf node in the resource directory tree. It contains an
address which is relative to the beginning of Image Base, a size field that gives the number
of bytes of data at that address, a code page that should be used when decoding code point
values within the resource data. Typically for new applications the code page would be the
Unicode code page.

8.2 Resource Example
The following is an example for an application that wants to use the following data as
resources:

 TypeId# NameId# Language ID Resource Data

00000001 00000001 0 00010001

00000001 00000001 1 10010001

00000001 00000002 0 00010002

00000001 00000003 0 00010003

00000002 00000001 0 00020001

00000002 00000002 0 00020002

00000002 00000003 0 00020003

00000002 00000004 0 00020004

00000009 00000001 0 00090001

00000009 00000009 0 00090009

00000009 00000009 1 10090009

00000009 00000009 2 20090009

Tool Interface Standards (TIS) Formats Specification for Windows 23
Version 1.0

Portable Executable Format

Then the Resource Directory in the Portable format looks like:

Offset Data

0000: 00000000 00000000 00000000 00030000 (3 entries in this directory)

0010: 00000001 80000028 (TypeId #1, Subdirectory at offset 0x28)

0018: 00000002 80000050 (TypeId #2, Subdirectory at offset 0x50)

0020: 00000009 80000080 (TypeId #9, Subdirectory at offset 0x80)

0028: 00000000 00000000 00000000 00030000 (3 entries in this directory)

0038: 00000001 800000A0 (NameId #1, Subdirectory at offset 0xA0)

0040: 00000002 00000108 (NameId #2, data desc at offset 0x108)

0048: 00000003 00000118 (NameId #3, data desc at offset 0x118)

0050: 00000000 00000000 00000000 00040000 (4 entries in this directory)

0060: 00000001 00000128 (NameId #1, data desc at offset 0x128)

0068: 00000002 00000138 (NameId #2, data desc at offset 0x138)

0070: 00000003 00000148 (NameId #3, data desc at offset 0x148)

0078: 00000004 00000158 (NameId #4, data desc at offset 0x158)

0080: 00000000 00000000 00000000 00020000 (2 entries in this directory)

0090: 00000001 00000168 (NameId #1, data desc at offset 0x168)

0098: 00000009 800000C0 (NameId #9, Subdirectory at offset 0xC0)

00A0: 00000000 00000000 00000000 00020000 (2 entries in this directory)

00B0: 00000000 000000E8 (Language ID 0, data desc at offset 0xE8

00B8: 00000001 000000F8 (Language ID 1, data desc at offset 0xF8

00C0: 00000000 00000000 00000000 00030000 (3 entries in this directory)

00D0: 00000001 00000178 (Language ID 0, data desc at offset 0x178

00D8: 00000001 00000188 (Language ID 1, data desc at offset 0x188

00E0: 00000001 00000198 (Language ID 2, data desc at offset 0x198

00E8: 000001A8 (At offset 0x1A8, for TypeId #1, NameId #1, Language id #0

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

00F8: 000001AC (At offset 0x1AC, for TypeId #1, NameId #1, Language id #1

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

0108: 000001B0 (At offset 0x1B0, for TypeId #1, NameId #2,

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

0118: 000001B4 (At offset 0x1B4, for TypeId #1, NameId #3,

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

0128: 000001B8 (At offset 0x1B8, for TypeId #2, NameId #1,

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

0138: 000001BC (At offset 0x1BC, for TypeId #2, NameId #2,

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

24 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

0148: 000001C0 (At offset 0x1C0, for TypeId #2, NameId #3,

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

0158: 000001C4 (At offset 0x1C4, for TypeId #2, NameId #4,

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

0168: 000001C8 (At offset 0x1C8, for TypeId #9, NameId #1,

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

0178: 000001CC (At offset 0x1CC, for TypeId #9, NameId #9, Language id #0

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

0188: 000001D0 (At offset 0x1D0, for TypeId #9, NameId #9, Language id #1

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

0198: 000001D4 (At offset 0x1D4, for TypeId #9, NameId #9, Language id #2

00000004 (4 bytes of data)

00000000 (codepage)

00000000 (reserved)

And the data for the resources will look like:

01A8: 00010001

01AC: 10010001

01B0: 00010002

01B4: 00010003

01B8: 00020001

01BC: 00020002

01C0: 00020003

01C4: 00020004

01C8: 00090001

01CC: 00090009

01D0: 10090009

01D4: 20090009

Tool Interface Standards (TIS) Formats Specification for Windows 25
Version 1.0

Portable Executable Format

9.0 FIXUP TABLE
The Fixup Table contains entries for all fixups in the image. The Total Fixup Data Size in
the PE Header is the number of bytes in the Fixup Table. The Fixup Table is broken into
blocks of fixups. Each block represents the fixups for a 4K page.

Fixups that are resolved by the linker do not need to be processed by the loader, unless the
load image can’t be loaded at the Image Base specified in the PE Header.

9.1 Fixup Block
Fixup blocks have the following format:

PAGE RVA

BLOCK SIZE

TYPE/OFFSET TYPE/OFFSET

TYPE/OFFSET TYPE/OFFSET

Figure 20. Fixup Block Format

To apply a fixup, a delta needs to be calculated. The 32-bit delta is the difference between
the preferred base, and the base where the image is actually loaded. If the image is loaded at
its preferred base, the delta would be zero, and thus the fixups would not have to be applied.
Each block must start on a DWORD boundary. The Absolute fixup type can be used to pad
a block.

PAGE RVA = DD

Page RVA. The image base plus the page RVA is added to each offset to create the virtual
address of where the fixup needs to be applied.

BLOCK SIZE = DD

Number of bytes in the fixup block. This includes the Page RVA and Size fields.

Type/Offset is defined as:

 15 11 0

TYPE OFFSET

Figure 21. Fixup Record Format

26 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

Type = 4-bit fixup type. This value has the following definitions:

0h - Absolute. This is a NOP. The fixup is skipped.

1h - High. Add the high 16-bits of the delta to the 16-bit field at Offset. The 16-bit field
represents the high value of a 32-bit word.

2h - Low. Add the low 16-bits of the delta to the 16-bit field at Offset. The 16-bit field
represents the low half value of a 32-bit word. This fixup will only be emitted for a
RISC machine when the image Object Align isn’t the default of 64K.

3h - Highlow. Apply the 32-bit delta to the 32-bit field at Offset.

4h - Highadjust. This fixup requires a full 32-bit value. The high 16-bits is located at
Offset, and the low 16-bits is located in the next Offset array element (this array
element is included in the Size field). The two need to be combined into a signed
variable. Add the 32-bit delta. Then add 0x8000 and store the high 16-bits of the
signed variable to the 16-bit field at Offset.

5h - Mipsjmpaddr.

All other values are reserved.

Tool Interface Standards (TIS) Formats Specification for Windows 27
Version 1.0

Portable Executable Format

10.0 DEBUG INFORMATION
The debug information is defined by the debugger and is not controlled by the portable EXE
format or linker. The only data defined by the portable EXE format is the Debug Directory
Table.

10.1 Debug Directory
The Debug Directory Table consists of one or more entries that have the following format:

DEBUG FLAGS
TIME/DATE STAMP

 MAJOR VERSION MINOR VERSION
DEBUG TYPE

DATA SIZE
DATA RVA

DATA SEEK

Figure 22. Debug Directory Entry

DEBUG FLAGS = DD

Set to zero.

TIME/DATE STAMP = DD

Time/Date the debug data was created.

MAJOR/MINOR VERSION = DW

Version stamp. This stamp can be used to determine the version of the debug data.

DEBUG TYPE = DD

Format type. To support multiple debuggers, this field determines the format of the debug
information. This value has the following definitions:

0001h - Image contains COFF symbolics.

0001h - Image contains Microsoft symbol and type information.

0001h - Image contains FPO symbolics.

DATA SIZE = DD

The number of bytes in the debug data. This is the size of the actual debug data and does not
include the debug directory.

28 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Portable Executable Format

DATA RVA = DD

The relative virtual address of the debug data. This address is relative to the beginning of
the Image Base.

DATA SEEK = DD

The seek value from the beginning of the file to the debug data.

If the image contains more than one type of debug information, then the next debug
directory will immediately follow the first debug directory.

Tool Interface Standards (TIS) Formats Specification for Windows 29
Version 1.0

II

Microsoft Symbol and Type Information

TIS Formats Specification for Windows, Version 1.0
Microsoft Symbol and Type Information

This document describes Microsoft Symbol and Type Information, a debugging information format from
Microsoft Corporation for the 32-bit Windows environment.

The TIS Committee formed a debug subcommittee to evaluate the widely available formats with the
objective of adopting one as the TIS standard. After studying many different formats, the committee
adopted Microsoft Symbol and Type Information as a standard debugging information format for 32-bit
Windows environments.

The TIS Committee worked with Microsoft to make the standard extensible. The remainder of the
information contained herein is provided by Microsoft, and no other technical modifications were
recommended by the TIS committee.

Microsoft Symbol and Type Information

Microsoft Symbol and Type Information

ii Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

Table of Contents

1. Symbol and Type Information ... 1
1.1. Logical Segments ...1
1.2. Lexical Scope Linkage...1
1.3. Numeric Leaves...2
1.4. Types Indices...3
1.5. $$SYMBOLS and $$TYPES Definitions...3

$$TYPES Definition ...3
$$SYMBOLS Definition ..4

2. Symbols ... 5
2.1. General...5

Format of Symbol Records ...5
Symbol Indices ..6

2.2. Non-modal Symbols...7
(0x0001) Compile Flag...7
(0x0002) Register..8
(0x0003) Constant...9
(0x0004) User-defined Type..9
(0x0005) Start Search..9
(0x0006) End of Block..9
(0x0007) Skip Record...10
(0x0008) Microsoft Debugger Internal...10
(0x0009) Object File Name..10
(0x000a) End of Arguments ..10
(0x000b) COBOL User-defined Type..11
(0x000c) Many Registers...11
(0x000d) Function Return ...11
(0x000e) this at Method Entry..12

2.3. Symbols for 16:16 Segmented Architectures ..12
(0x0100) BP Relative 16:16...12
(0x0101) Local Data 16:16..12
(0x0102) Global Data Symbol 16:16..13
(0x0103) Public Symbol 16:16 ..13
(0x0104) Local Start 16:16..13
(0x0105) Global Procedure Start 16:16..14
(0x0106) Thunk Start 16:16..14
(0x0107) Block Start 16:16..15
(0x0108) With Start 16:16...15
(0x0109) Code Label 16:16...15
(0x010a) Change Execution Model 16:16...16
(0x010b) Virtual Function Table Path 16:16..17
(0x010c) Register Relative 16:16..17

2.4. Symbols for 16:32 Segmented Architectures ..17
(0x0200) BP Relative 16:32...17
(0x0201) Local Data 16:32..18
(0x0202) Global Data Symbol 16:32..18
(0x0203) Public 16:32...18
(0x0204) Local Procedure Start 16:32..18
(0x0205) Global Procedure Start 16:32..19
(0x0206) Thunk Start 16:32..19
(0x0207) Block Start 16:32..20
(0x0208) With Start 16:32...20
(0x0209) Code Label 16:32...20
(0x020a) Change Execution Model 16:32...20
(0x020b) Virtual Function Table Path 16:32..21
(0x020c) Register Relative 16:32..22
(0x020d) Local Thread Storage 16:32...22
(0x020e) Global Thread Storage 16:32...22

2.5. Symbols for MIPS Architectures ..23
(0x0300) Local Procedure Start MIPS..23
(0x0301) Global Procedure Start MIPS..23

Tool Interface Standards (TIS) Formats Specification for Windows i
Version 1.0

Microsoft Symbol and Type Information

2.6. Symbols for CVPACK Optimization..24
(0x0400) Procedure Reference...24
(0x0401) Data Reference...24
(0x0402) Symbol Page Alignment ..24

3. Types Definition Segment ($$TYPES) 25
3.1. Type Record...25
3.2. Type String..25

Member Attribute Field...27
3.3. Leaf Indices Referenced from Symbols ..28

(0x0001) Type Modifier...28
(0x0002) Pointer..28
(0x0003) Simple Array...33
(0x0004) Classes..33
(0x0005) Structures..33
(0x0006) Unions..34
(0x0007) Enumeration...34
(0x0008) Procedure..34
(0x0009) Member Function...35
(0x000a) Virtual Function Table Shape ..35
(0x000b) COBOL0...36
(0x000c) COBOL1..36
(0x000d) Basic Array...36
(0x000e) Label...36
(0x000f) Null..37
(0x0010) Not Translated..37
(0x0011) Multiply Dimensioned Array..37
(0x0012) Path to Virtual Function Table ..37
(0x0013) Reference Precompiled Types..38
(0x0014) End of Precompiled Types ..38
(0x0015) OEM Generic Type..38
(0x0016) Reserved..39

3.4. Type Records Referenced from Type Records...40
(0x0200) Skip...40
(0x0201) Argument List...40
(0x0202) Default Argument..40
(0x0203) Arbitrary List ...40
(0x0204) Field List..41
(0x0205) Derived Classes...41
(0x0206) Bit Fields..41
(0x0207) Method List...42
(0x0208) Dimensioned Array with Constant Upper Bound...42
(0x0209) Dimensioned Array with Constant Lower and Upper Bounds42
(0x020a) Dimensioned Array with Variable Upper Bound..42
(0x020b) Dimensioned Array with Variable Lower and Upper Bounds....................43
(0x020c) Referenced Symbol...43

3.5. Subfields of Complex Lists..44
(0x0400) Real Base Class...44
(0x0401) Direct Virtual Base Class..44
(0x0402) Indirect Virtual Base Class...44
(0x0403) Enumeration Name and Value...45
(0x0404) Friend Function ..45
(0x0405) Index To Another Type Record...45
(0x0406) Data Member..46
(0x0407) Static Data Member...46
(0x0408) Method...46
(0x0409) Nested Type Definition ..46
(0x040a) Virtual Function Table Pointer..47
(0x040b) Friend Class ..47
(0x040c) One Method...47
(0x040d) Virtual Function Offset ...47

ii Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

4. Numeric Leaves... 48
(0x8000) Signed Char...48
(0x8001) Signed Short..48
(0x8002) Unsigned Short...48
(0x8003) Signed Long...48
(0x8004) Unsigned Long..48
(0x8005) 32-bit Float..49
(0x8006) 64-bit Float..49
(0x8007) 80-bit Float..49
(0x8008) 128 Bit Float..49
(0x8009) Signed Quad Word...49
(0x800a) Unsigned Quad Word..49
(0x800b) 48-bit Float..50
(0x800c) 32-bit Complex..50
(0x800d) 64-bit Complex...50
(0x800e) 80-bit Complex..50
(0x800f) 128-bit Complex..50
(0x8010) Variable-length String...50

5. Predefined Primitive Types.. 51
5.1. Format of Reserved Types...51
5.2. Primitive Type Listing...53

Special Types...53
Character Types...53
Real Character Types..53
Wide Character Types...54
Real 16-bit Integer Types ..54
16-bit Short Types ..54
Real 32-bit Integer Types ..54
32-bit Long Types...55
Real 64-bit int Types ..55
64-bit Integral Types..55
32-bit Real Types ..55
48-bit Real Types ..56
64-bit Real Types ..56
80-bit Real Types ..56
128-bit Real Types..56
32-bit Complex Types ..56
64-bit Complex Types ..57
80-bit Complex Types ..57
128-bit Complex Types ..57
Boolean Types...57

6. Register Enumerations.. 58
6.1. Intel 80x86/80x87 Architectures..58

8-bit Registers...58
16-bit Registers...58
32-bit Registers...58
Segment Registers...58
Special Cases ...59
PCODE Registers...59
System Registers...59
Register Extensions for 80x87..59

6.2. Motorola 68000 Architectures...60
6.3. MIPS Architectures ..61

Integer Register..61

7. Symbol and Type Format for Microsoft Executables.......... 63
7.1. Introduction ...63
7.2. Debug Information Format...63
7.3. Subsection Directory..65
7.4. SubSection Types (sst...) ..67

(0x0120) sstModule...68
(0x0121) sstTypes...68
(0x0122) sstPublic...68

Tool Interface Standards (TIS) Formats Specification for Windows iii
Version 1.0

Microsoft Symbol and Type Information

(0x0123) sstPublicSym ...69
(0x0124) sstSymbols...69
(0x0125) sstAlignSym...69
(0x0126) sstSrcLnSeg...69
(0x0127) sstSrcModule...70
(0x0128) sstLibraries...71
(0x0129) sstGlobalSym..72
(0x012a) sstGlobalPub...72
(0x012b) sstGlobalTypes...73
(0x012c) sstMPC...74
(0x012d) sstSegMap...74
(0x012e) sstSegName..75
(0x012f) sstPreComp..75
(0x0131) Reserved..75
(0x0132) Reserved..76
(0x0133) sstFileIndex...76
(0x0134) sstStaticSym..76

7.5. Hash table and sort table descriptions ...77
Name hash table (symhash == 10): ..77
Address sort table (addrhash == 12): ..78

iv Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

1. Symbol and Type Information
This document describes the format and meaning of Microsoft symbol and type debugging
information. The information is contained within two tables emitted by the language processor
into the object file. Each table is treated as a stream of variable length records. The first table is
called $$SYMBOLS and describes the symbols in the object file. The record for each symbol
contains the symbol name, the symbol address and other information needed to describe the
symbol. The second table is called $$TYPES and contains information about symbol typing.
There are fields in the records contained in $$SYMBOLS that index into the records contained
in $$TYPES. Records in $$TYPES can also index into the records contained in the $$TYPES
table.

The records for $$SYMBOLS and $$TYPES are accumulated by the linker and are written into
the executable file. There is a third table of symbol information for each object file that is
generated by the linker and written into the executable file called the PUBLICS table. This table
contains symbol records for each public symbol definition encountered in the object file.

Field sizes and arrangement in $$SYMBOLS and $$TYPES are arranged to maintain "natural
alignment" to improve performance. Natural alignment indicates that a field begins on an
address that is divisible by the size of the field. For example, a four byte (long) value begins on
an address that is evenly divisible by four. Some architectures, such as the MIPS R4000, impose
a severe penalty for loading data that is not in natural alignment. Even for Intel386 and
Intel486 processors, there is a significant improvement when processing data that is in natural
alignment.

Compilers that emit Symbol and Type OMF (object module formats) according to this
specification indicate so by placing a signature of 0x00000001 at the beginning of the
$$SYMBOLS and $$TYPES tables.

In all structure descriptions and value enumerations, all values not specified in this document are
reserved for future use. All values should be referenced by the symbolic descriptions.

The CVPACK utility must be run on a linked executable file before the Microsoft debugger can
process the file. This utility removes duplicate symbol and type information and rewrites the
remaining information in a format optimized for processing by the debugger. CVPACK will
recognize old Symbol and Type OMF and rewrite it to this format during packing.

1.1. Logical Segments
When the linker emits address information about a symbol, it is done in segment:offset format.
The segment is a logical segment index assigned by the linker and the offset is the offset from
the beginning of the logical segment. The physical address is assigned by the operating system
when the program is loaded.

For PE-formatted executables, the segment field is interpreted as the PE section number.

1.2. Lexical Scope Linkage
The model of a program envisioned by this document is that programs have nested scopes. The
outermost scope is module scope which encompasses all of the symbols not defined within any
inner (lexical) scope. Symbols and types defined at one scoping level are visible to all scopes
nested within it. Symbols and types defined at module scope are visible to all inner scopes.

Tool Interface Standards (TIS) Formats Specification for Windows 1
Version 1.0

Microsoft Symbol and Type Information

The next level of scoping is "function" scope, which in turn contains lexical blocks (including
other functions scopes) that can be further nested. Nested lexical scopes are opened by a
procedure, method, thunk, with, or block start symbol. They are closed by the matching block-
end symbol.

In general, symbol searching within a module's symbol table is performed in the following
manner. The lexical scope that contains the current program address is searched for the symbol.
If the symbol is not found within that scope, the enclosing lexical scope is searched. This search
is repeated outward until the symbol is found or the module scope is searched unsuccessfully.
Note that lexical scopes at the same depth level are not searched. As an optimization for the
debugger, symbols that open a lexical scope have fields that contain offsets from the beginning
of the symbols for the module, which point to the parent of the scope, the next lexical scope that
is at the same scoping level, and the S_END symbol that closes this lexical scope.

The pParent, pNext and pEnd fields described below are filled in by the CVPACK utility and
should be emitted as zeroes by the language processor.

Field Linkage
pParent Used in local procedures, global procedures, thunk start, with start, and

block start symbols. If the scope is not enclosed by another lexical scope,
then pParent is zero. Otherwise, the parent of this scope is the symbol
within this module that opens the outer scope that encloses this scope but
encloses no other scope that encloses this scope. The pParent field contains
the offset from the beginning of the module's symbol table of the symbol
that opens the enclosing lexical scope.

pNext Used in start search local procedures, global procedures, and thunk start
symbols. The pNext field, along with the start search symbol, defines a
group of lexically scoped symbols within a symbol table that is contained
within a code segment or PE section. For each segment or section
represented in the symbol table, there is a start search symbol that contains
the offset from the start of the symbols for this module to the first procedure
or thunk contained in the segment. Each outermost lexical scope symbol
has a next field containing the next outermost scope symbol contained in the
segment. The last outermost scope in the symbol table for each segment has
a next field of zero.

pEnd This field is defined for local procedures, global procedures, thunk, block,
and with symbols. The end field contains the offset from the start of the
symbols for this module to the matching block end symbol that terminates
the lexical scope.

1.3. Numeric Leaves
When the symbol or type processor knows that a numeric leaf is next in the symbol or type
record, the next two bytes of the symbol or type string are examined. If the value of these two
bytes is less than LF_NUMERIC (0x8000), then the two bytes contain the actual numeric value.
If the value is greater than or equal to LF_NUMERIC (0x8000), then the numeric data follows
the two-byte leaf index in the format specified by the numeric leaf index. It is the responsibility
of routines reading numeric fields to handle the potential non alignment of the data fields. See
Section 4 entitled Numeric Leaves for details.

2 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

1.4. Types Indices
All Symbol and Type OMF records which reference records in the $$TYPES table must use
valid non-zero type indices. For public symbols a type index of 0x0000 (T_NOTYPE) is
permitted.

Since many types (relating to hardware and language primitives) are common, type index values
less than 0x1000 (CV_FIRST_NONPRIM) are reserved for a set of predefined primitive types.
A list of predefined types and their indices are defined in this document in Section 5. Type
indices of 0x1000 and higher are used to index into the set of non-primitive type definitions in
the module's $$TYPES segment. Thus 0x1000 is the first type, 0x1001 the second, and so on.
Non-primitive type indices must be sequential and cannot contain gaps in the numbering.

1.5. $$SYMBOLS and $$TYPES Definitions

$$TYPES Definition

OMF

Type information appears in OMF TYPDEF format as LEDATA records that contribute to the
special $$TYPES debug segment. A SEGDEF or SEGDEF32 record for this segment must be
produced in each module that contains Symbol and Type OMF type information and have the
attributes:

Name: $$TYPES
Combine type: private
Class: DEBTYP

The first four bytes of the $$TYPES table is used as a signature to specify the version of the
Symbol and Type OMF contained in the $$TYPES segment. If the first two bytes of the
$$TYPES segment are not 0x0000, the signature is invalid and the version is assumed to be that
emitted for an earlier version of the Microsoft CodeView debugger (version 3.x and earlier). If
the signature is 0x00000001, the Symbol and Type OMF has been written to conform to the later
version of the Microsoft debugger (version 4.0) specification. All other values for the signature
are reserved. The CVPACK utility rewrites previous versions of the Symbol and Type OMF to
conform to this specification. The signatures of the $$TYPES and $$SYMBOLS tables must
agree.

COFF

Type information appears in a COFF (common object file format) as initialized data sections.
The attributes for the sections are:

NAME: .debug$T
Attribute: Read Only, Discardable, Initialized Data

As with OMF, the first four bytes in the types section must contain a valid signature and agree
with the signature in the symbol table.

Tool Interface Standards (TIS) Formats Specification for Windows 3
Version 1.0

Microsoft Symbol and Type Information

$$SYMBOLS Definition

OMF

Symbol information appears in OMF TYPDEF format as LEDATA records that contribute to the
special $$SYMBOLS debug segment. A SEGDEF or SEGDEF32 record for this segment must
be produced in each module that contains Symbol and Type OMF symbol information and have
these attributes:

Name: $$SYMBOLS
Combine type: private
Class: DEBSYM

The first four bytes of the $$SYMBOLS segment is used as a signature to specify the version of
the Symbol and Type OMF contained in the $$SYMBOLS segment. If the first two bytes of the
$$SYMBOLS segment are not 0x0000, the signature is invalid and the version is assumed to be
that emitted for an earlier version of the Microsoft CodeView debugger, version 3.x and earlier.
If the signature is 0x00000001, the Symbol and Type OMF has been written to conform to the
version 4.0 specification of the Microsoft CodeView debugger. All other values for the
signature are reserved. The CVPACK utility rewrites previous versions of the Symbol and Type
OMF to conform to this specification. The signatures for the $$TYPES and $$SYMBOLS tables
must agree.

COFF

Symbol information appears in separate sections. The attributes of the section are:

Name: .debug$S
Attributes: Read Only, Discardable, Initialized Data

There may be multiple symbol sections in an object. The first symbol section to appear in the
object file must NOT be associated with a comdat section and must contain a valid signature. If
a comdat section is present in the object then the symbol information for that comdat should be
in a separate symbol section associated with the text comdat section. Symbol sections
associated with comdats must not contain a signature.

4 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

2. Symbols

2.1. General

Format of Symbol Records

Data in the $$SYMBOLS segment is a stream of variable length records with the general format:

2 2 *
length index data...

length Length of record, excluding the length field.
index Type of symbol.
data Data specific to each symbol format.

The symbol records are described below. Numbers above the fields indicate the length in bytes,
and * means variable length for that field.

Symbol indices are broken into five ranges. The first range is for symbols whose format does
not change with the compilation model of the program or the target machine. These include
register symbols, user-defined type symbols, and so on. The second range of symbols are those
that contain 16:16 segmented addresses. The third symbol range is for symbols that contain
16:32 addresses. Note that for flat model programs, the segment is replaced with the section
number for PE format .exe files. The fourth symbol range is for symbols that are specific to the
MIPS architecture/compiler. The fifth range is for Microsoft CodeView optimization.

The symbol records are formatted such that most fields fall into natural alignment if the symbol
length field is placed on a long word boundary. For all symbols, the variable length data is at
the end of the symbol structure. Note specifically that fields that contain data in potentially
nonaligned numeric fields must either pay the load penalty or first do a byte wise copy of the
data to a memory that is in natural alignment. Refer to Section 4 for details about numeric
leaves.

16:16 compilers do not have to emit padding bytes between symbols to maintain natural
alignment. The CVPACK utility places the symbols into the executable files in natural
alignment and zero pads the symbol to force alignment. The length of each symbol is adjusted
to account for the pad bytes. 16:32 compilers must align symbols on a long word boundary.

Provisions for enabling future implementation of register tracking and a stack machine to
perform computation on symbol addresses are provided in the symbols. When the symbol
processor is examining a symbol, the length field of the symbol is compared with the offset of
the byte following the end of the symbol name field. If these are the same, there is no stack
machine code at the end of the symbol. If the length and offset are different, the byte following
the end of the symbol name is examined. If the byte is zero, there is no stack machine code
following the symbol. If the byte is not zero, then the byte indexes into the list of stack machine
implementations and styles of register tracking. If stack machine code is present, the address
field of the symbol becomes the initial value of the stack machine. Microsoft does not currently
emit or process stack machine code or register tracking information. The opcodes and operation
of the stack machine have not been defined.

Tool Interface Standards (TIS) Formats Specification for Windows 5
Version 1.0

Microsoft Symbol and Type Information

Symbol Indices

0x0001 S_COMPILE Compile flags symbol
0x0002 S_REGISTER Register variable
0x0003 S_CONSTANT Constant symbol
0x0004 S_UDT User-defined Type
0x0005 S_SSEARCH Start search
0x0006 S_END End block, procedure, with, or thunk
0x0007 S_SKIP Skip - Reserve symbol space
0x0008 S_CVRESERVE Reserved for internal use by the Microsoft

debugger
0x0009 S_OBJNAME Specify name of object file
0x000a S_ENDARG Specify end of arguments in function symbols
0x000b S_COBOLUDT Microfocus COBOL user-defined type
0x000c S_MANYREG Many register symbol
0x000d S_RETURN Function return description
0x000e S_ENTRYTHIS Description of this pointer at entry

0x0100 S_BPREL16 BP relative 16:16
0x0101 S_LDATA16 Local data 16:16
0x0102 S_GDATA16 Global data 16:16
0x0103 S_PUB16 Public symbol 16:16
0x0104 S_LPROC16 Local procedure start 16:16
0x0105 S_GPROC16 Global procedure start 16:16
0x0106 S_THUNK16 Thunk start 16:16
0x0107 S_BLOCK16 Block start 16:16
0x0108 S_WITH16 With start 16:16
0x0109 S_LABEL16 Code label 16:16
0x010a S_CEXMODEL16 Change execution model 16:16
0x010b S_VFTPATH16 Virtual function table path descriptor 16:16
0x010c S_REGREL16 Specify 16:16 offset relative to arbitrary register

0x0200 S_BPREL32 BP relative 16:32
0x0201 S_LDATA32 Local data 16:32
0x0202 S_GDATA32 Global data 16:32
0x0203 S_PUB32 Public symbol 16:32
0x0204 S_LPROC32 Local procedure start 16:32
0x0205 S_GPROC32 Global procedure start 16:32
0x0206 S_THUNK32 Thunk start 16:32
0x0207 S_BLOCK32 Block start 16:32
0x020b S_VFTPATH32 Virtual function table path descriptor 16:32
0x020c S_REGREL32 16:32 offset relative to arbitrary register
0x020d S_LTHREAD32 Local Thread Storage data
0x020e S_GTHREAD32 Global Thread Storage data

0x0300 S_LPROCMIPS Local procedure start MIPS
0x0301 S_GPROCMIPS Global procedure start MIPS

0x0400 S_PROCREF Reference to a procedure
0x0401 S_DATAREF Reference to data
0x0402 S_ALIGN Page align symbols

6 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

2.2. Non-modal Symbols

(0x0001) Compile Flag

This symbol communicates with Microsoft debugger compile-time information, such as the
language and version number of the language processor, the ambient model for code and data,
and the target processor, on a per-module basis.

2 2 1 3 *
length S_COMPILE machine flags version

machine Enumeration specifying target processor. Values not specified in the
following list are reserved:
0x00 Intel 8080
0x01 Intel 8086
0x02 Intel 80286
0x03 Intel 80386
0x04 Intel 80486
0x05 Intel Pentium
0x10 MIPS R4000
0x11 Reserved for future MIPS processor
0x12 Reserved for future MIPS processor
0x20 MC68000
0x21 MC68010
0x22 MC68020
0x23 MC68030
0x24 MC68040
0x30 DEC Alpha

flags Flags showing compile-time options, as follows:
Language :8
PCodePresent :1
FloatPrecision :2
FloatPackage :2
AmbientData :3
AmbientCode :3
Mode32 :1 Compiled for 32-bit addresses
Reserved :4

Language enumerations:
0 C
1 C++
2 Fortran
3 Masm
4 Pascal
5 Basic
6 COBOL
7 - 255 Reserved

Tool Interface Standards (TIS) Formats Specification for Windows 7
Version 1.0

Microsoft Symbol and Type Information

Ambient code and data memory model enumeration:
0 Near
1 Far
2 Huge
3 - 7 Reserved

Floating-package enumeration:
0 Hardware processor (80x87 for Intel 80x86 processors)
1 Emulator
2 Altmath
3 Reserved

The FloatPrecision flag is set to 1 if the compiler follows the ANSI C
floating-point precision rules. This is specified for Microsoft C
compilers by setting the -Op option.

version Length-prefixed string specifying language processor version.
Language processors can place additional data in version string if
desired.

(0x0002) Register

This symbol record describes a symbol that has been placed in a register. Provisions for
enabling future implementation tracking of a symbol into and out of registers is provided in this
symbol. When the symbol processor is examining a register symbol, the length field of the
symbol is compared with the offset of the byte following the symbol name field. If these are the
same, there is no register tracking information. If the length and offset are different, the byte
following the end of the symbol name is examined. If the byte is zero, there is no register
tracking information following the symbol. If the byte is not zero, then the byte is the index into
the list of stack machine implementations and styles of register tracking. Microsoft does not
currently emit or process register-tracking information.

2 2 2 2 * *
length S_REGISTER @type register name tracking

@type Type of symbol.
register Enumeration of the registers in which the symbol value is stored.

This field is treated as two bytes. The high order byte specifies the
register in which the high order part of the value is stored. The low
byte specifies the register for the low order part of the value. If the
value is not stored in two registers then high order register field
contains the enumeration value for no register. For register
enumeration values, see Section 6. The register index enumeration is
specific to the processor model for the module.

name Length-prefixed name of the symbol stored in the register.
tracking Register-tracking information. Format unspecified.

8 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x0003) Constant

This record is used to output constants and C enumerations. If used to output an enumeration,
then the type index refers to the containing enum.

2 2 2 * *
length S_CONSTANT @type value name

@type Type of symbol or containing enum.
value Numeric leaf containing the value of symbol.
name Length-prefixed name of symbol.

(0x0004) User-defined Type

This specifies a C typedef or user-defined type, such as classes, structures, unions, or enums.

2 2 2 *
length S_UDT @type name

@type Type of symbol.
name Length-prefixed name of the user defined type.

(0x0005) Start Search

These records are always the first symbol records in a module's $$SYMBOL section. There is
one Start Search symbol for each segment (PE section) to which the module contributes code.
Each Start Search symbol contains the segment (PE section) number and $$SYMBOL offset of
the record of the outermost lexical scope in this module that physically appears first in the
specified segment of the load image. This referenced symbol is the symbol used to initiate
context searches within this module. The Start Search symbols are inserted into the
$$SYMBOLS table by the CVPACK utility and must not be emitted by the language processor.

2 2 4 2
length S_SSEARCH sym off segment

sym off $$SYMBOL offset of the procedure or thunk record for this module
that has the lowest offset for the specified segment. See Section 1.2
on lexical scope linking.

segment Segment (PE section) to which this Start Search refers.

(0x0006) End of Block

Closes the scope of the nearest preceding Block Start, Global Procedure Start, Local Procedure
Start, With Start, or Thunk Start definition.

2 2
length S_END

Tool Interface Standards (TIS) Formats Specification for Windows 9
Version 1.0

Microsoft Symbol and Type Information

(0x0007) Skip Record

This record reserves symbol space for incremental compilers. The compiler can reserve a dead
space in the OMF for future expansions due to an incremental build. This symbol and the
associated reserved space is removed by the CVPACK utility.

2 2 *
length S_SKIP skip data

skip data Unused data. Use the length field that precedes every symbol record
to skip this record.

(0x0008) Microsoft Debugger Internal

This symbol is used internally by the Microsoft debugger and never appears in the executable
file. Its format is unspecified.

(0x0009) Object File Name

This symbol specifies the name of the object file for this module.

2 2 4 *
length S_OBJNAME signature name

signature Signature for the Microsoft symbol and type information contained in
this module. If the object file contains precompiled types, then the
signature will be checked against the signature in the LF_PRECOMP
type record contained in the $$TYPES table for the user of the
precompiled types. The signature check is used to detect
recompilation of the supplier of the precompiled types without
recompilation of all of the users of the precompiled types. The
method for computing the signature is unspecified, but should be
sufficiently robust to detect failures to recompile.

name Length-prefixed name of the object file without any path information
prepended to the name.

(0x000a) End of Arguments

This symbol specifies the end of symbol records used in formal arguments for a function. Use of
this symbol is optional for OMF and required for MIPS-compiled code. In OMF format, the end
of arguments can also be deduced from the fact that arguments for a function have a positive
offset from the frame pointer.

2 2
length S_ENDARG

10 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x000b) COBOL User-defined Type

This record is used to define a user-defined type for the Microfocus COBOL compiler. This
record cannot be moved into the global symbol table by the CVPACK utility.

2 2 2 *
length S_COBOLUDT @type name

@type Type of symbol.
name Length-prefixed name of the user-defined type.

(0x000c) Many Registers

This record is used to specify that a symbol is stored in a set of registers.

2 2 2 1 1 * count *
length S_MANYREG @type count reglist name

@type Type index of the symbol.
count Count of the register enumerations that follow.
reglist List of registers in which the symbol is stored. The registers are listed

high order register first.
name Name of the symbol.

(0x000d) Function Return

This symbol is used to describe how a function is called, how the return value, if any, is
returned, and how the stack is cleaned up.

2 2 2 1 *
length S_RETURN flags style data

flags Flags for function call:
cstyle :1 push varargs right to left, if true
rsclean :1 returnee stack cleanup, if true
unused :14

style Function return style:
0x00 void return
0x01 return value is in the registers specified in data
0x02 indirect caller-allocated near
0x03 indirect caller-allocated far
0x04 indirect returnee-allocated near
0x05 indirect returnee-allocated far

data Data required by function return style.
If style is 0x01, then data is the following format.

Tool Interface Standards (TIS) Formats Specification for Windows 11
Version 1.0

Microsoft Symbol and Type Information

1 1 * count
count reglist

count Count of the number of registers.
reglist Registers (high order first) containing the value.

(0x000e) this at Method Entry

This record is used to describe the this pointer at entry to a method. It is really a wrapper for
another symbol that describes the this pointer.

2 2 *
length S_ENTRYTHIS symbol

symbol Full symbol, including length and symbol type fields, which describes
the this pointer.

2.3. Symbols for 16:16 Segmented Architectures

(0x0100) BP Relative 16:16

This symbol specifies symbols that are allocated on the stack for a procedure. For C and C++,
these include the actual function parameters and the local nonstatic variables of functions.

2 2 2 2 *
length S_BPREL16 offset @type name

offset Signed offset relative to BP. If offset is 0, the symbol was assigned to
a register or never instantiated by the optimizer and cannot be
evaluated because its location is unknown.

@type Type of symbol.
name Length-prefixed name of symbol.

(0x0101) Local Data 16:16

These symbols are used for data that is not exported from a module. In C and C++, symbols that
are declared static are emitted as Local Data symbols. Symbols that are emitted as Local Data
cannot be moved by the CVPACK utility into the global symbol table for the executable file.

2 2 2 2 2 *
length S_LDATA16 offset segment @type name

offset Offset portion of symbol address.
segment Segment portion of symbol address.
@type Type index of symbol.
name Length-prefixed name of symbol.

12 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x0102) Global Data Symbol 16:16

This symbol record has the same format as the Local Data 16:16 except that the record type is
S_GDATA16. For C and C++, symbols that are not specifically declared static are emitted as
Global Data Symbols and can be compacted by the CVPACK utility into the global symbol
table.

(0x0103) Public Symbol 16:16

This symbol has the same format as the Local Data 16:16 symbol. Its use is reserved for
symbols in the public table that is emitted by the linker into the Symbol and Type OMF portion
of the executable file. Current linkers (version 5.30 and later) emit the public symbols in the
S_PUB16 format. Previous linkers emitted the public symbols in the following obsolete format:

2 2 2 *
offset segment @type name

offset Offset portion of symbol address.
segment Segment portion of symbol address.
@type Type index of symbol (can be zero).
name Length-prefixed name of symbol.

For public symbols emitted in the obsolete format, the CVPACK utility rewrites them to the
S_PUB16 format before compacting them into the global publics table. For more information
about the format of the Symbol and Type OMF as written by the linker and CVPACK utilities,
see Section 7 on executable file format.

(0x0104) Local Start 16:16

This symbol record defines local (file static) procedure definitions. For C and C++, functions
that are declared static to a module are emitted as Local Procedure symbols. Functions not
specifically declared static are emitted as Global Procedures (see below).

2 2 4 4 4 2 2
length symbol pParent pEnd pNext proc length debug start ->

2 2 2 2 1 *
debug end offset segment @proctype flags name

symbol S_LPROC16 or S_GPROC16.
pParent See the section on lexical scope linking.
pEnd See the section on lexical scope linking.
pNext See the section on lexical scope linking.
proc length Length in bytes of this procedure.
debug start Offset in bytes from the start of the procedure to the point where the

stack frame has been set up. Frame and register variables can be
viewed at this point.

Tool Interface Standards (TIS) Formats Specification for Windows 13
Version 1.0

Microsoft Symbol and Type Information

debug end Offset in bytes from the start of the procedure to the point where the
procedure is ready to return and has calculated its return value, if any.
Frame and register variables can still be viewed.

offset Offset portion of the procedure address.
segment Segment portion of the procedure address.
@proctype Type index of the procedure type record.
flags Procedure flags:

fpo :1 True if function has frame pointer omitted.
interrupt :1 True if function is interrupt routine.
return :1 True if function performs far return.
never :1 True if function never returns.
unused :4

name Length-prefixed name of procedure.

(0x0105) Global Procedure Start 16:16

This symbol is used for procedures that are not specifically declared static to a module. The
format is the same as the Local Procedure Start 16:16 symbol (see above.)

(0x0106) Thunk Start 16:16

This symbol is used to specify any piece of code that exists outside of a procedure. The lexical
scope started by the Thunk Start symbol is closed by a matching End record.

2 2 4 4 2 2 2
length S_THUNK16 pParent pEnd pNext offset segment ->

2 1 * *
length ordinal name variant

pParent See the section on lexical scope linking.
pEnd See the section on lexical scope linking.
pNext See the section on lexical scope linking.
offset Offset portion of the thunk address.
segment Segment portion of the thunk address.
ordinal Ordinal specifying the type of thunk:

0 NOTYPE

1 ADJUSTOR

2 VCALL

3 PCODE

length Length in bytes of this thunk.
name Length-prefixed name of thunk.
variant Variant field, depending on the value of ordinal. If ordinal is

NOTYPE, there will be no variant field. If ordinal is ADJUSTOR, the
variant field will be a two-byte signed value specifying the delta to be
added to the this pointer, followed by the name of the target function.
If the ordinal is VCALL , then the variant field will be a 2-byte signed
displacement into the virtual table. Note that because of the variable
length name, the data in the variant field will not be in natural
alignment. If ordinal is PCODE, the variant is the segment:offset of the
pcode entry point.

14 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x0107) Block Start 16:16

This symbol specifies the start of an inner block of lexically scoped symbols. The lexical scope
is terminated by a matching S_END symbol.

2 2 4 4 2 2 2 *
length S_BLOCK16 pParent pEnd length offset segment name

pParent See the section on lexical scope linking.
pEnd See the section on lexical scope linking.
length Length in bytes of the scope of this block.
offset Offset portion of the segmented procedure address.
segment Segment portion of the segmented procedure address.
name Length-prefixed name of block.

(0x0108) With Start 16:16

This symbol describes the lexical scope of the Pascal with statement.

2 2 4 4 2 2 2 *
length S_WITH16 pParent pEnd length offset segment expr

pParent See the section on lexical scope linking.
pEnd See the section on lexical scope linking.
length Length in bytes of the scope of the with block.
offset Offset portion of the block start address.
segment Segment portion of the block start address.
expr Length-prefixed ASCII string of the expression used in the with

statement, which is evaluated at run time.

(0x0109) Code Label 16:16

2 2 2 2 1 *
length S_LABEL16 offset segment flags name

offset Offset portion of the code label address.
segment Segment portion of the code label address.
flags Label flags. This uses the same flag definition as in the S_LPROC16

symbol record, as follows:
fpo :1 True if function has frame pointer omitted.
interrupt :1 True if function is interrupt routine.
return :1 True if function performs far return.
never :1 True if function never returns.
unused :4

name Length-prefixed name of code label.

Tool Interface Standards (TIS) Formats Specification for Windows 15
Version 1.0

Microsoft Symbol and Type Information

(0x010a) Change Execution Model 16:16

This record is used to notify the debugger that, starting at the given code offset and until the
address specified by the next Change Execution Model record, the execution model is of the
specified type. The native execution model is assumed in the absence of Change Execution
Model records.

2 2 2 2 2 *
length S_CEXMODEL16 offset segment model variant

offset Offset portion of start of the block.
segment Segment portion of the start of block.
model The execution model.

0x00 Not executable code (e.g., a table)
0x01 Compiler generated jump table
0x02 Padding for data
0x03 - 0x1f Reserved for specific noncode types.
0x20 Native model (no processor specified)
0x21 Microfocus COBOL
0x22 Code padding for alignment
0x23 Code
0x24 - 0x3F Reserved
0x40 Pcode

variant Variable data dependent upon the execution model field. If the
variant record contains segment or offset information, then the
CVPACK utility and the Microsoft debugger must be modified to
process the segment information.

The variant field for 0x40 (C7 Pcode) data has the following format:

2 2
Fcn Header SPI

Fcn Header Offset of the Pcode procedure's Function Header.
SPI Offset of the Pcode segment's Segment Pcode Information.
Both addresses are in the specified code segment.

The variant field for 0x21 (Microfocus COBOL) has the following format:

2 2
subtype flag

subtype COBOL execution model subtype.
0 Do not stop execution until next model record
1 pfm
2 False call - continue tracing
3 External call

The other models do not have variant fields.

16 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x010b) Virtual Function Table Path 16:16

This record is used to describe the base class path for the virtual function table descriptor.

2 2 2 2 2 2
length S_VFTPATH16 offset segment @root @path

offset Offset portion of start of the virtual function table.
segment Segment portion of the virtual function table.
@root The type index of the class at the root of the path.
@path Type index of the record describing the base class path from the root

to the leaf class for the virtual function table.

(0x010c) Register Relative 16:16

This symbol specifies symbols that are allocated relative to a register.

2 2 2 2 2 *
length S_REGREL16 offset register @type name

offset Signed offset relative to register.
register Register enumeration for symbol base. Note that the register field can

specify a register pair, such as ES:BX.
@type Type of symbol.
name Length-prefixed name of symbol.

2.4. Symbols for 16:32 Segmented Architectures

(0x0200) BP Relative 16:32

This symbol specifies symbols that are allocated on the stack for a procedure. For C and C++,
these include the actual function parameters and the local non-static variables of functions.

2 2 4 2 *
length S_BPREL32 offset @type name

offset Signed offset relative to BP. If offset is 0, then the symbol was
assigned to a register or never instantiated by the optimizer and
cannot be evaluated because its location is unknown.

@type Type of symbol.
name Length-prefixed name of symbol.

Tool Interface Standards (TIS) Formats Specification for Windows 17
Version 1.0

Microsoft Symbol and Type Information

(0x0201) Local Data 16:32

These symbols are used for data that is not exported from a module. In C and C++, symbols that
are declared static are emitted as Local Data symbols. Symbols that are emitted as Local Data
cannot be moved by the CVPACK utility into the global symbol table for the executable file.

2 2 4 2 2 *
length S_LDATA32 offset segment @type name

offset Offset portion of symbol address.
segment Segment portion of symbol address.
@type Type index of symbol.
name Length-prefixed name of symbol.

(0x0202) Global Data Symbol 16:32

This symbol record has the same format as the Local Data 16:32 except that the record type is
S_GDATA32. For C and C++, symbols that are not specifically declared static are emitted as
Global Data Symbols and can be compacted by the CVPACK utility into the global symbol
table.

(0x0203) Public 16:32

This symbol has the same format as the Local Data 16:32 symbol. Its use is reserved to symbols
in the publics table emitted by the linker into the Symbol and Type OMF portion of the
executable file.

(0x0204) Local Procedure Start 16:32

This symbol record defines local (file static) procedure definition. For C and C++, functions
that are declared static to a module are emitted as Local Procedure symbols. Functions not
specifically declared static are emitted as Global Procedures (see below.)

2 2 4 4 4 4 4
length symbol pParent pEnd pNext proc length debug start ->

4 4 2 2 1 *
debug end offset segment @proctype flags name

symbol S_LPROC32 or S_GPROC32.
pParent See the section on lexical scope linking.
pEnd See the section on lexical scope linking.
pNext See the section on lexical scope linking.
proc length Length in bytes of this procedure.
debug start Offset in bytes from the start of the procedure to the point where the

stack frame has been set up. Parameter and frame variables can be
viewed at this point.

18 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

debug end Offset in bytes from the start of the procedure to the point where the
procedure is ready to return and has calculated its return value, if any.
Frame and register variables can still be viewed.

offset Offset portion of the procedure address.
segment Segment portion of the procedure address.
@proctype Type of the procedure type record.
flags Procedure flags:

fpo :1 True if function has frame pointer omitted.
interrupt :1 True if function is interrupt routine.
return :1 True if function performs far return.
never :1 True if function never returns.
unused :4

name Length-prefixed name of procedure.

(0x0205) Global Procedure Start 16:32

This symbol is used for procedures that are not specifically declared static to a module. The
format is the same as the Local Procedure Start 16:32 symbol (see above.)

(0x0206) Thunk Start 16:32

This record is used to specify any piece of code that exists outside a procedure. It is followed by
an End record. The thunk record is intended for small code fragments and a two byte length
field is sufficient for its intended purpose.

2 2 4 4 4 4 2
length S_THUNK32 pParent pEnd pNext offset segment ->

2 1 * *
thunk length ordinal name variant

pParent See the section on lexical scope linking.
pEnd See the section on lexical scope linking.
pNext See the section on lexical scope linking.
offset Offset portion of the thunk address.
segment Segment portion of the thunk address.
thunk length Length in bytes of this thunk.
ordinal Ordinal specifying the type of thunk, as follows:

0 NOTYPE

1 ADJUSTOR

2 VCALL

3 PCODE

name Length-prefixed name of thunk.
variant Variant field, depending on value of ordinal. If ordinal is NOTYPE,

there is no variant field. If ordinal is ADJUSTOR, the variant field is a
two-byte signed value specifying the delta to be added to the this
pointer, followed by the length-prefixed name of the target function.
If ordinal is VCALL , then the variant field is a two-byte signed
displacement into the virtual table. If ordinal is PCODE, the variant is
the segment:offset of the pcode entry point.

Tool Interface Standards (TIS) Formats Specification for Windows 19
Version 1.0

Microsoft Symbol and Type Information

(0x0207) Block Start 16:32

This symbol specifies the start of an inner block of lexically scoped symbols. The lexical scope
is terminated by a matching S_END symbol.

2 2 4 4 4 4 2 *
length S_BLOCK32 pParent pEnd length offset segment name

pParent See the section on lexical scope linking.
pEnd See the section on lexical scope linking.
length Length in bytes of the scope of this block.
offset Offset portion of the segmented procedure address.
segment Segment portion of the segmented procedure address.
name Length-prefixed name of the block.

(0x0208) With Start 16:32

2 2 4 4 4 4 2 *
length S_WITH32 pParent pEnd length offset segment expr

pParent See the section on lexical scope linking.
pEnd See the section on lexical scope linking.
length Length in bytes of the scope of the with block.
offset Offset portion of the segmented address of the start of the block.
segment Segment portion of the segmented address of the start of the block.
expr Length-prefixed ASCII string, evaluated at run time, of the expression

used in the with statement.

(0x0209) Code Label 16:32

2 2 4 2 1 *
length S_LABEL32 offset segment flags name

offset Offset portion of the segmented address of the start of the block.
segment Segment portion of the segmented address of the start of the block.
flags Label flags. This uses the same flag definition as in the S_LPROC16

symbol record, as follows:
fpo :1 True if function has frame pointer omitted.
interrupt :1 True if function is interrupt routine.
return :1 True if function performs far return.
never :1 True if function never returns.
unused :4

name Length-prefixed name of label.

20 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x020a) Change Execution Model 16:32

This record is used to notify the debugger that, starting at the given code offset and until the
address specified by the next Change Execution Model record, the execution model is of the
specified type. The native execution model is assumed in the absence of Change Execution
Model records.

2 2 4 2 2 *
length S_CEXMODEL32 offset segment model variant

offset Offset portion of start of block.
segment Segment portion of the start of block.
model Execution model, as follows:

0x00 Not executable code (e.g., a table)
0x01 Compiler generated jump table
0x02 Padding for data
0x03 - 0x1f Reserved for specific noncode types.
0x20 Native model (no processor specified)
0x21 Microfocus COBOL (unused in 16:32)
0x22 Code padding for alignment
0x23 Code
0x24 - 0x3f Reserved
0x40 Pcode (Reserved)

variant Variable data dependent upon the execution model field. If the
variant record contains segment or offset information, then the
CVPACK utility and the Microsoft debugger must be modified to
process the segment information.

The other models do not have variant fields.

(0x020b) Virtual Function Table Path 16:32

This record is used to describe the base class path for the virtual function table descriptor.

2 2 4 2 2 2
length S_VFTPATH32 offset segment @root @path

offset Offset portion of start of the virtual function table.
segment Segment portion of the virtual function table.
@root The type index of the class at the root of the path.
@path Type index of the record describing the base class path from the root

to the leaf class for the virtual function table.

Tool Interface Standards (TIS) Formats Specification for Windows 21
Version 1.0

Microsoft Symbol and Type Information

(0x020c) Register Relative 16:32

This symbol specifies symbols that are allocated relative to a register.

2 2 4 2 2 *
length S_REGREL32 offset register @type name

offset Signed offset relative to register.
register Register enumerations on which the symbol is based. Note that the

register field can specify a pair of registers, such as ES:EBX.
@type Type of symbol.
name Length-prefixed name of symbol.

(0x020d) Local Thread Storage 16:32

These symbols are used for data declared with the thread storage attribute that is not exported

from a module. In C and C++, thread symbols that are declared static are emitted as Local

Thread Storage 16:32 symbols. Symbols that are emitted as Local Thread Storage 16:32 cannot
be moved by the CVPACK utility into the global symbol table for the executable file.

2 2 4 2 2 *
length S_LTHREAD32 offset segment @type name

offset Offset into thread local storage.
segment Segment of thread local storage.
@type Type index.
name Length-prefixed name.

(0x020e) Global Thread Storage 16:32

This symbol record has the same format as the Local Thread Storage 16:32 except that the
symbol type is S_GTHREAD32. For C and C++, thread symbols that are not specifically

declared static are emitted as Global Thread Storage 16:32 symbols and can be compacted by
the CVPACK utility into the global symbol table.

22 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

2.5. Symbols for MIPS Architectures

(0x0300) Local Procedure Start MIPS

The symbol records define local (file static) procedures. For C and C++, functions that are
declared static to a module are emitted as Local Procedure symbols.

2 2 4 4 4 4 4
length symbol pParent pEnd pNext length debug start ->

4 4 4 4 4
debug
end

int save
mask

fp save mask int save offset fp save offset ->

4 2 2 1 1 *
offset seg @proctype retreg frame pointer reg name

symbol S_LPROCMIPS or S_GPROCMIPS.
pParent See the section on lexical scope linking.
pEnd See the section on lexical scope linking.
pNext See the section on lexical scope linking.
length Length in bytes of this procedure.
debug start Offset in bytes from the start of the procedure to the point where the

stack frame has been set up. Parameter and frame variables can be
viewed at this point.

debug end Offset in bytes from the start of the procedure to the point where the
procedure is ready to return and has calculated its return value, if any.
Frame and register variables can still be viewed. If the procedure has
multiple exits, this field is zero.

int save mask Integer register save mask.
fp save mask Floating-point register save mask.
int save offset Offset from sp to the integer register save area.
fp save offset Offset from sp to the floating point register save area.
offset Offset portion of the address of the start of the procedure.
segment Segment portion of the address of the start of the procedure.
@proctype Type index of the procedure type record.
retreg Index of the register that contains the return address. If this register is

31 and the integer register save mask indicates that the register has
been saved, then the return address is in the integer register save area.

framepointer Frame pointer register if not zero.
name Length-prefixed name of procedure.

(0x0301) Global Procedure Start MIPS

This symbol is used for procedures that are not specifically declared static to a module. The
format is the same as the Local Procedure Start 16:32 symbol (see above.)

Tool Interface Standards (TIS) Formats Specification for Windows 23
Version 1.0

Microsoft Symbol and Type Information

2.6. Symbols for CVPACK Optimization

(0x0400) Procedure Reference

This symbol is inserted into the global and static symbol tables to reference a procedure. It is
used so that the symbol procedure can be found in the hashed search of the global or static
symbol table. Otherwise, procedures could be found only by searching the symbol table for
every module.

2 2 4 4 2
length S_PROCREF checksum offset module

checksum Checksum of the referenced symbol name. The checksum used is the
one specified in the header of the sstGlobalSym or sstStaticSym
subsections. See Section 7.4 for more details on the subsection
headers.

offset Offset of the procedure symbol record from the beginning of the
$$SYMBOL table for the module.

module Index of the module that contains this procedure record.

(0x0401) Data Reference

This symbol is inserted into the global and static symbol tables to reference data. It is used so
that the symbol procedure can be found in the hashed search of the global or static symbol table.
Otherwise, data symbols could be found only by searching the symbol table for every module.

2 2 4 4 2
length S_DATAREF checksum offset module

checksum Checksum of the referenced symbol name.
offset Offset of the procedure symbol record from the beginning of the

$$SYMBOL table for the module.
module Index of the module that contains this procedure record.

(0x0402) Symbol Page Alignment

This symbol is inserted by the CVPACK utility to pad symbol space so that the next symbol will
not cross a page boundary.

2 2 *
length S_ALIGN pad

pad Unused data. Use the length field that precedes every symbol record
to skip this record. The pad bytes must be zero. For sstGlobalSym
and sstGlobalPub, the length of the pad field must be at least the
sizeof (long). There must be an S_Align symbol at the end of these
tables with a pad field containing 0xffffffff. The sstStaticSym table
does not have this requirement.

24 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

3. Types Definition Segment ($$TYPES)
A $$TYPES segment may appear in linkable modules. It provides descriptions of the types of
symbols found in the $$PUBLICS and $$SYMBOLS debug section for the module.

3.1. Type Record
A type record has the following format:

2 *
length type string

length Length in bytes of the following type string. This count does not
include the length field.

3.2. Type String
A type string is a series of consecutive leaf structures and has the following format:

2 * 2 * 2 *
leaf data leaf data ... leaf data

leaf LF_... index, as described below.
data Data specified to each leaf type.

No LF_... index can have a value of 0x0000. The leaf indices are separated into four ranges
according to the use of the type record. The first range is for the type records that are directly
referenced in symbols. The second range is for type records that are not referenced by symbols,
but instead are referenced by other type records. All type records must have a starting leaf index
in these first two ranges.

The third range of leaf indices is used to build complex lists, such as the field list of a class type
record. No type record can begin with one of the leaf indices in this range.

The fourth ranges of type indices are used to represent numeric data in a symbol or type records.
These leaf indices are greater than 0x8000. At the point that the type or symbol processor is
expecting a numeric field, the next two bytes in the type record are examined. If the value is
less than 0x8000, then the two bytes contain the numeric value. If the value is greater than
0x8000, then the data follows the leaf index in a format specified by the leaf index. See Section
4 for a detailed description of numeric leaf indices.

Because of the method used to maintain natural alignment in complex lists, no leaf index can
have a value greater than or equal to 0xf000. Also, no leaf index can have a value such that the
least significant 8 bits of the value is greater than or equal to 0xf0.

Tool Interface Standards (TIS) Formats Specification for Windows 25
Version 1.0

Microsoft Symbol and Type Information

Leaf indices for type records that can be referenced from symbols are the following:

0x0001 LF_MODIFIER
0x0002 LF_POINTER
0x0003 LF_ARRAY
0x0004 LF_CLASS
0x0005 LF_STRUCTURE
0x0006 LF_UNION
0x0007 LF_ENUM
0x0008 LF_PROCEDURE
0x0009 LF_MFUNCTION
0x000a LF_VTSHAPE
0x000b LF_COBOL0
0x000c LF_COBOL1
0x000d LF_BARRAY
0x000e LF_LABEL
0x000f LF_NULL
0x0010 LF_NOTTRAN
0x0011 LF_DIMARRAY
0x0012 LF_VFTPATH
0x0013 LF_PRECOMP
0x0014 LF_ENDPRECOMP
0x0015 LF_OEM
0x0016 Reserved

Leaf indices for type records that can be referenced from other type records are the following:

0x0200 LF_SKIP
0x0201 LF_ARGLIST
0x0202 LF_DEFARG
0x0203 LF_LIST
0x0204 LF_FIELDLIST
0x0205 LF_DERIVED
0x0206 LF_BITFIELD
0x0207 LF_METHODLIST
0x0208 LF_DIMCONU
0x0209 LF_DIMCONLU
0x020a LF_DIMVARU
0x020b LF_DIMVARLU
0x020c LF_REFSYM

Leaf indices for fields of complex lists are the following:

0x0400 LF_BCLASS
0x0401 LF_VBCLASS
0x0402 LF_IVBCLASS
0x0403 LF_ENUMERATE
0x0404 LF_FRIENDFCN
0x0405 LF_INDEX
0x0406 LF_MEMBER
0x0407 LF_STMEMBER
0x0408 LF_METHOD
0x0409 LF_NESTTYPE
0x040a LF_VFUNCTAB
0x040b LF_FRIENDCLS
0x040c LF_ONEMETHOD

26 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

0x040d LF_VFUNCOFF

Leaf indices for numeric fields of symbols and type records are the following:

0x8000 LF_NUMERIC
0x8000 LF_CHAR
0x8001 LF_SHORT
0x8002 LF_USHORT
0x8003 LF_LONG
0x8004 LF_ULONG
0x8005 LF_REAL32
0x8006 LF_REAL64
0x8007 LF_REAL80
0x8008 LF_REAL128
0x8009 LF_QUADWORD
0x800a LF_UQUADWORD
0x800b LF_REAL48
0x800c LF_COMPLEX32
0x800d LF_COMPLEX64
0x800e LF_COMPLEX80
0x800f LF_COMPLEX128
0x8010 LF_VARSTRING

0xf0 LF_PAD0
0xf1 LF_PAD1
0xf2 LF_PAD2
0xf3 LF_PAD3
0xf4 LF_PAD4
0xf5 LF_PAD5
0xf6 LF_PAD6
0xf7 LF_PAD7
0xf8 LF_PAD8
0xf9 LF_PAD9
0xfa LF_PAD10
0xfb LF_PAD11
0xfc LF_PAD12
0xfc LF_PAD13
0xfe LF_PAD14
0xff LF_PAD15

Member Attribute Field

Several of the type records below reference a field attribute bit field. This bit field has the
following format:

access :2 Specifies the access protection of the item
0 No access protection
1 Private
2 Protected
3 Public

mprop :3 Specifies the properties for methods
0 Vanilla method
1 Virtual method

Tool Interface Standards (TIS) Formats Specification for Windows 27
Version 1.0

Microsoft Symbol and Type Information

2 Static method
3 Friend method
4 Introducing virtual method
5 Pure virtual method
6 Pure introducing virtual method
7 Reserved

pseudo :1 True if the method is never instantiated by the compiler
noinherit :1 True if the class cannot be inherited
noconstruct :1 True if the class cannot be constructed
reserved :8

3.3. Leaf Indices Referenced from Symbols

(0x0001) Type Modifier

This record is used to indicate the const, volatile and unaligned properties for any particular
type.

2 2 2
LF_MODIFIER attribute @index

attribute const :1 const attribute
volatile :1 volatile attribute
unaligned :1 unaligned attribute
reserved :13

@index type index of the modified type.

(0x0002) Pointer

This record is the generic pointer type record. It supports the C++ reference type, pointer to data
member, and pointer to method. It also conveys const and volatile pointer information.

2 2 2 *
LF_POINTER attribute @type variant

attribute Consists of five bit fields:
ptrtype :5 Ordinal specifying mode of pointer

0 Near
1 Far
2 Huge
3 Based on segment
4 Based on value
5 Based on segment of value
6 Based on address of symbol
7 Based on segment of symbol address
8 Based on type
9 Based on self

28 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

10 Near 32-bit pointer
11 Far 32-bit pointer

12-31 Reserved
ptrmode :3 Ordinal specifying pointer mode

0 Pointer
1 Reference
2 Pointer to data member
3 Pointer to method

4-7 Reserved
isflat32 :1 True if 16:32 pointer
volatile :1 True if pointer is volatile

const :1 True if pointer is const
unaligned :1 True if pointer is unaligned

unused :4 Unused and reserved
@type Type index of object pointed to
variant variant portion of the record, depending

upon the pointer type
based on segment - Segment value
based on type- Index of type followed by
length-prefixed name
based on self - Nothing
based on symbol - Copy of symbol
record including length field
pointer to data member - Union
specifying pointer to data member
pointer to method - Union specifying
pointer to method

The union specifying the pointer to data member has the following format:

2 2
@class format

class Type index of containing class.
format 0 16:16 data for class with no virtual functions or virtual bases

1 16:16 data for class with virtual functions
2 16:16 data for class with virtual bases
3 16:32 data for classes with or without virtual functions and no

virtual bases
4 16:32 data for class with virtual bases
5 16:16 near method non-virtual bases with single address point
6 16:16 near method non-virtual bases with multiple address points
7 16:16 near method with virtual bases
8 16:16 far method non-virtual bases with single address point
9 16:16 far method non-virtual bases with multiple address points
10 16:16 far method with virtual bases
11 16:32 method non-virtual bases with single address point
12 16:32 method non-virtual bases with multiple address points
13 16:32 method with virtual bases

Tool Interface Standards (TIS) Formats Specification for Windows 29
Version 1.0

Microsoft Symbol and Type Information

The pointer to data member and pointer to method have the following formats in memory. In
the following descriptions of the format and value of the NULL pointer, * means any value.

Ø (00) 16:16 pointer to data member for a class with no virtual functions or bases.

2
mdisp

mdisp Displacement to data. NULL is 0xffff.

Ø (01) 16:16 pointer to data member for a class with virtual functions.

2
mdisp

mdisp Displacement to data. NULL is 0.

Ø (02) 16:16 pointer to data member for a class with virtual bases.

2 2 2
mdisp pdisp vdisp

mdisp Displacement to data.
pdisp this pointer displacement to virtual base table pointer.
vdisp Displacement within virtual base table. NULL value is (,,0xffff).

Ø (03) 16:32 near pointer to data member for a class with and without virtual functions and no
virtual bases.

4
mdisp

mdisp Displacement to data. NULL is 0x80000000.

Ø (04) 16:32 near pointer to data member for a class with virtual bases.

4 4 4
mdisp pdisp vdisp

mdisp Displacement to data.
pdisp this pointer displacement to virtual base table pointer.
vdisp Displacement within virtual base table. NULL value is (,,0xffffffff).

30 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

Ø (05) 16:16 pointer to near member function for a class with no virtual functions or bases and a
single address point.

2
off

off Near address of method. NULL is 0.

Ø (06) 16:32 pointer to near member function for a class with no virtual bases with multiple
address points.

2 2
off disp

off Offset of function.
disp Displacement of address point. NULL is (0,*).

Ø (07) 16:16 pointer to near member function for a class with virtual bases.

2 2 2 2
off mdisp pdisp vdisp

off Offset of function.
mdisp Displacement to data.
pdisp this pointer displacement to virtual base table pointer.
vdisp Displacement within virtual base table. NULL value is (0,*,*,*).

 Ø (08) 16:16 pointer to far member function for a class with no virtual bases and a single address
point.

2 2
off seg

off Offset of function.
disp Displacement of address point. NULL is (0:0).

Ø (09) 16:16 pointer to far member function for a class with no virtual bases and multiple address
points.

2 2 2
off seg disp

off Offset of function.
seg Segment of function.
disp Displacement of address point. NULL is (0:0,*).

Tool Interface Standards (TIS) Formats Specification for Windows 31
Version 1.0

Microsoft Symbol and Type Information

Ø (10) 16:16 pointer to far member function for a class with virtual bases.

2 2 2 2 2
off seg mdisp pdisp vdisp

off Offset of function.
seg Segment of function.
mdisp Displacement to data.
pdisp this pointer displacement to virtual base table pointer.
vdisp Displacement within virtual base table. NULL value is (0,*,*,*).

Ø (11) 16:32 pointer to member function for a class with no virtual bases and a single address
point.

4
off

off Offset of function. NULL is 0L.

Ø (12) 16:32 pointer to member function for a class with no virtual bases and multiple address
points.

4 4
off disp

off Offset of function.
disp Displacement of address point. NULL is (0L:0L).

Ø (13) 16:32 pointer to member function for a class with virtual bases.

4 4 4 4
off mdisp pdisp vdisp

off Offset of function.
mdisp Displacement to data.
pdisp this pointer displacement to virtual base table pointer.
vdisp Displacement within virtual base table. NULL value is (0L,*,*,*).

32 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x0003) Simple Array

The format for a simple array is as follows:

2 2 2 * *
LF_ARRAY @elemtype @idxtype length name

@elemtype Type index of each array element.
@idxtype Type index of indexing variable.
length Length of array in bytes.
name Length-prefixed name of array.

(0x0004) Classes

The format for classes is as follows:

2 2 2 2 2 2 * *
leaf count @field property @dList @vshape length name

leaf LF_CLASS or LF_STRUCTURE.
count Number of elements in the class or structure. This count includes

direct, virtual, and indirect virtual bases, and methods including
overloads, data members, static data members, friends, and so on.

@field Type index of the field list for this class.
property Property bit field

packed :1 Structure is packed
ctor :1 Class has constructors and/or destructors
overops :1 Class has overloaded operators
isnested :1 Class is a nested class
cnested :1 Class contains nested classes
opassign :1 Class has overloaded assignment
opcast :1 Class has casting methods
fwdref :1 Class/structure is a forward (incomplete) reference
scoped :1 This is a scoped definition
reserved :8

@dList Type index of the derivation list. This is output by the compiler as
0x0000 and is filled in by the CVPACK utility to a LF_DERIVED
record containing the type indices of those classes which immediately
inherit the current class. A zero index indicates that no derivation
information is available. An LF_NULL index indicates that the class
is not inherited by other classes.

@vshape Type index of the virtual function table shape descriptor.
length Numeric leaf specifying size in bytes of the structure.
name Length-prefixed name this type.

(0x0005) Structures

Structures have the same format as classes. Structure type records are used exclusively by the C
compiler. The C++ compiler emits both class and structure records depending upon the
declaration.

Tool Interface Standards (TIS) Formats Specification for Windows 33
Version 1.0

Microsoft Symbol and Type Information

(0x0006) Unions

The format for unions is as follows:

2 2 2 2 * *
LF_UNION count @field property length name

count Number of fields in the union.
@field Type index of field list.
property Property bit field.
length Numeric leaf specifying size in bytes of the union.
name Length-prefixed name of union.

(0x0007) Enumeration

The format for an enum is as follows:

2 2 2 2 2 *
LF_ENUM count @type @fList property name

count Number of enumerations.
@type Underlying type of enum.
@field Type index of field list.
property Property bit field.
name Length-prefixed name of enum.

(0x0008) Procedure

The format for a procedure is as follows:

2 2 1 1 2 2
LF_PROCEDURE @rvtype call reserved #parms @arglist

@rvtype Type index of the value returned by the procedure.
call Calling convention of the procedure, as follows:

0 Near C (arguments pushed right to left, caller pops
arguments)
1 Far C.
2 Near Pascal (arguments pushed left to right, callee pops

arguments)
3 Far Pascal
4 Near fastcall
5 Far fastcall
6 Reserved
7 Near stdcall
8 Far stdcall
9 Near syscall
10 Far syscall
11 This call

34 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

12 MIPS call
13 Generic
14-255 Reserved

#parms Number of parameters.
@arglist Type index of argument list type record.

(0x0009) Member Function

The format for a member function is as follows:

2 2 2 2 1 1
LF_MFUNCTION @rvtype @class @this call res ->

2 2 4
#parms @arglist thisadjust

@rvtype Type index of the value returned by the procedure.
@class Type index of the containing class of the function.
@this Type index of the this parameter of the member function. A type of

void indicates that the member function is static and has no this
parameter.

call Calling convention of the procedure. See Procedure description.
res Reserved. Must be emitted as zero.
#parms Number of parameters. This count does not include the this

parameter.
arglist List of parameter specifiers. This list does not include the this

parameter.
thisadjust Logical this adjuster for the method. Whenever a class element is

referenced via the this pointer, thisadjust will be added to the
resultant offset before referencing the element.

(0x000a) Virtual Function Table Shape

This record describes the format of a virtual function table. This record is accessed via the
vfunctabptr in the member list of the class which introduces the virtual function. The
vfunctabptr is defined either by the LF_VFUNCTAB or LF_VFUNCOFF member record. If
LF_VFUNCTAB record is used, then vfunctabptr is at the address point of the class. If
LF_VFUNCOFF record is used, then vfunctabptr is at the specified offset from the class address
point. The underlying type of the pointer is a VTShape type record. This record describes how
to interpret the memory at the location pointed to by the virtual function table pointer.

2 2 4 bits
LF_VTSHAPE count descriptor

repeated

count Number of descriptors.

Tool Interface Standards (TIS) Formats Specification for Windows 35
Version 1.0

Microsoft Symbol and Type Information

descriptor A four-bit ordinal describing the entry in the virtual table
0 Near
1 Far
2 Thin
3 Address point displacement to outermost class. This is at

entry[-1] from table address
4 Far pointer to metaclass descriptor. This is at entry[-2] from

table address
5 Near32
6 Far32
7 - 15 Reserved

(0x000b) COBOL0

This record has been reserved for the Microfocus COBOL compiler.

2 2 *
LF_COBOL0 @parent data

@parent Type index of the parent type.
data Data.

(0x000c) COBOL1

This record has been reserved for the Microfocus COBOL compiler.

2 *
LF_COBOL1 data

data Data.

(0x000d) Basic Array

2 2
LF_BARRAY @ type

type Type of each element in the array.

(0x000e) Label

This is used for assembler labels where there is no typing information about the label.

2 2
LF_LABEL mode

mode Addressing mode of the label, as follows:
0 Near label
4 Far label

36 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x000f) Null

This is used when the symbol requires a type record but the data content is null.

2
LF_NULL

(0x0010) Not Translated

This is used when CVPACK encounters a type record that has no equivalent in the Microsoft
symbol information format.

2
LF_NOTTRANS

(0x0011) Multiply Dimensioned Array

This record is used to describe a multiply dimensioned array.

2 2 2 *
LF_DIMARRAY @utype @diminfo name

@utype Underlying type of the array.
@diminfo Index of the type record containing the dimension information.
name Length-prefixed name of the array.

(0x0012) Path to Virtual Function Table

This record is used to describe the path to the virtual function table.

2 2 2 * count
LF_VFTPATH count bases

count Count or number of bases in the path to the virtual function table.
bases Type indices of the base classes in the path.

Tool Interface Standards (TIS) Formats Specification for Windows 37
Version 1.0

Microsoft Symbol and Type Information

(0x0013) Reference Precompiled Types

This record specifies that the type records are included from the precompiled types contained in
another module in the executable. A module that contains this type record is considered to be a
user of the precompiled types. When emitting to a COFF object, the section name should be
.debug$P rather than .debug$T. All other attributes should be the same.

2 2 2 4 *
LF_PRECOMP start count signature name

start Starting type index that is included. This number must correspond to
the current type index in the current module.

count Count or number of type indices included. After including the
precompiled types, the type index must be start + count.

signature Signature for the precompiled types being referenced by this module.
The signature will be checked against the signature in the
S_OBJNAME symbol record and the LF_ENDPRECOMP type record
contained in the $$TYPES table of the creator of the precompiled
types. The signature check is used to detect recompilation of the
supplier of the precompiled types without recompilation of all of the
users of the precompiled types. The method for computing the
signature is unspecified. It should be sufficiently robust to detect
failures to recompile.

name Name of the module containing the precompiled types. This name
must match the module name in the S_OBJNAME symbol emitted by
the compiler for the object file containing the precompiled types.

(0x0014) End of Precompiled Types

This record specifies that the preceding type records in this module can be referenced by another
module in the executable. A module that contains this type record is considered to be the creator
of the precompiled types. The subsection index for the $$TYPES segment for a precompiled
types creator is emitted as sstPreComp instead of sstTypes, so that the CVPACK utility can pack
the precompiled types creators before the users. Precompiled types must be emitted as the first
type records within the $$TYPES segment and must be self-contained. That is, they cannot
reference a type record with an index greater than or equal to the type index of the
LF_ENDPRECOMP type record.

2 4
LF_ENDPRECOMP signature

signature Signature of the precompiled types. The signatures in the
S_OBJNAME symbol record, the LF_PRECOMP type record and this
signature must match.

38 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x0015) OEM Generic Type

This record is supplied to allow third party compiler vendors to emit debug OMF information in
an arbitrary format and still allow the CVPACK utility to process the record. CVPACK
processes this record by performing a left to right depth first recursive pack of the records
specified by indices below. The remainder of the data is copied without alteration.

2 2 2 2 2 * count *
LF_OEM OEM recOEM count indices data

OEM Microsoft-assigned OEM identifier.
recOEM OEM-assigned record identifier. These record identifiers are unique

per assigned OEM.
count Number of type indices that follow.
indices Type indices.
data Remainder of type record.

(0x0016) Reserved

Tool Interface Standards (TIS) Formats Specification for Windows 39
Version 1.0

Microsoft Symbol and Type Information

3.4. Type Records Referenced from Type Records

(0x0200) Skip

This is used by incremental compilers to reserve space for future indexes.

2 2 *
LF_SKIP index pad

index In processing $$TYPES, the index counter is advanced to index count,
skipping all intermediate indices. This is the next valid index.

pad Space reserved for incremental compilations. Note that this record is
removed by the link/pack utility, so there is no requirement for
maintaining natural alignment for this record.

(0x0201) Argument List

2 2 *
LF_ARGLIST argcount indices

argcount Count or number of indices in list.
indices List of type indices for describing the formal parameters for a function

or method.

(0x0202) Default Argument

2 2 *
LF_DEFARG @index expression

index Type index of resulting expression.
expression Length-prefixed string of supplied default.

(0x0203) Arbitrary List

2 *
LF_LIST data

data A list of leaves with a format defined by the leaf that indexes the list.
This leaf type has been superseded by more specific list types and its
use is not recommended.

40 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x0204) Field List

A field list contains the descriptors of the fields of a structure, class, union, or enumeration. The
field list is composed of zero or more subfields. Because of the requirement for natural
alignment, there may be padding between elements of the field list. As a program walks down
the field list, the address of the next subfield is calculated by adding the length of the previous
field to the address of the previous field. The byte at the new address is examined and if it is
greater than 0xf0, the low four bits are extracted and added to the address to find the address of
the next subfield. These padding fields are not included in the count field of the class, structure,
union, or enumeration type records. If the field list is broken into two or more pieces by the
compiler, then the last field of each piece is an LF_INDEX with the type being the index of the
continuation record. The LF_INDEX and LF_PADx fields of the field list are not included in
field list count specified in the class, structure, union, or enumeration record. See Section 3.5
for field list elements.

2 * * ... * 2 *
leaf data pad ... pad leaf data

(0x0205) Derived Classes

This type record specifies all of the classes that are directly derived from the class that
references this type record.

2 2 *
LF_DERIVED count @type

count Number of types in the list.
@type Type indices of the classes that directly inherit from the class that

references this type record.

(0x0206) Bit Fields

Bit fields are represented by an entry in the field list that indexes a bit field type definition.

2 1 1 2
LF_BITFIELD length position @type

length Length in bits of the object.
position Starting position (from bit 0) of the object in the word.
@type Type index of the field.

Tool Interface Standards (TIS) Formats Specification for Windows 41
Version 1.0

Microsoft Symbol and Type Information

(0x0207) Method List

2 2 2 4
LF_MLIST attribute @type vtab offset

optional

repeated

attribute Attribute of the member function.
@type Type index of the procedure record for this occurrence of the

function.
vtab offset Present only when property attribute is introducing virtual (optional).

Offset in vtable of the class which contains the pointer to the function.

Once a method has been found in this list, its symbol is found by qualifying the method name
with its class (T::name) and then searching the symbol table for a symbol by that name with the
correct type index. Note that the number of repeats is determined by the subleaf of the field list
that references this LF_MLIST record.

(0x0208) Dimensioned Array with Constant Upper Bound

This record is used to describe a dimensioned array with default lower bound and constant upper
bound. The default lower bound is language specific.

2 2 2 s*rank
LF_DIMCONU rank @index bound

rank Number of dimensions.
@index Type of index.
bound Constants for the upper bound of each dimension of the array. Each

constant is of the size s specified by @index.

(0x0209) Dimensioned Array with Constant Lower and Upper Bounds

This record is used to describe a dimensioned array with constant lower and upper bound.

2 2 2 2*s*rank
LF_DIMCONLU rank @index bound

rank Number of dimensions.
@index Type of index.
bound Pairs of constants for the lower and upper bound of each dimension of

the array. Each constant is of the size s specified by @index. The
ordering is lower bound followed by upper bound for each dimension.

42 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x020a) Dimensioned Array with Variable Upper Bound

This record is used to describe a dimensioned array with default lower bound and variable upper
bound. The default lower bound is language specific.

2 2 2 2*rank
LF_DIMVARU rank @index @var

rank Number of dimensions.
@index Type of index.
@var Array of type index of LF_REFSYM record describing the variable

upper bound. If one dimension of the array is variable, then all
dimensions must be described using LF_REFSYM records.

(0x020b) Dimensioned Array with Variable Lower and Upper Bounds

This record is used to describe a dimensioned array with variable lower and upper bound.

2 2 2 2*rank
LF_DIMVARLU rank @index var

rank Number of dimensions.
@index Type of index.
@var Array of type indices of LF_REFSYM records describing the variable

lower and upper bounds. If one dimension of the array is variable,
then all dimensions must be described using LF_REFSYM records.
The order is lower bound followed by upper bound for each
dimension.

(0x020c) Referenced Symbol

This record is used to describe a symbol that is referenced by a type record. The record is
defined because type records cannot reference symbols or locations in the $$SYMBOLS table
and because global symbol compaction will move symbols.

2 *
LF_REFSYM sym

sym Copy of the referenced symbol including the length field.

Tool Interface Standards (TIS) Formats Specification for Windows 43
Version 1.0

Microsoft Symbol and Type Information

3.5. Subfields of Complex Lists
Currently, the only complex list that uses the following leaf indices is the field list of a structure,
class, union, or enumeration.

(0x0400) Real Base Class

This leaf specifies a real base class. If a class inherits real base classes, the corresponding Real
Base Class records will precede all other member records in the field list of that class. Base
class records are emitted in left-to-right declaration order for real bases.

2 2 *
LF_BCLASS @type attribute offset

@type Index to type record of the class. The class name can be obtained
from this record.

attribute Member attribute bit field.
offset Offset of subobject that represents the base class within the structure.

(0x0401) Direct Virtual Base Class

This leaf specifies directly inherited virtual base class. If a class directly inherits virtual base
classes, the corresponding Direct Virtual BaseClass records will follow all Real Base Class
member records and precede all other member records in the field list of that class. Direct
Virtual Base class records are emitted in bottommost left-to-right inheritance order for directly
inherited virtual bases.

2 2 2 2 * *
type @btype @vbtype attribute vbpoff vboff

type LF_VBCLASS.
@btype Index to type record of the direct or indirect virtual base class. The

class name can be obtained from this record.
@vbptype Type index of the virtual base pointer for this base
attribute Member attribute bit field.
vbpoff Numeric leaf specifying the offset of the virtual base pointer from the

address point of the class for this virtual base.
vboff Numeric leaf specifying the index into the virtual base displacement

table of the entry that contains the displacement of the virtual base.
The displacement is relative to the address point of the class plus
vbpoff.

(0x0402) Indirect Virtual Base Class

This leaf specifies indirectly inherited virtual base class. If a class indirectly inherits virtual base
classes, the corresponding Indirect Virtual Base Class records will follow all Real Base Class
and Direct Virtual Base Class member records and precede all other member records in the field
list of that class. Direct Virtual Base class records are emitted in bottommost left-to-right
inheritance order for virtual bases.

44 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

2 2 2 2 * *
type @btype @vbtype attribute vbpoff vboff

type LF_VBCLASS or LF_IVBCLASS.
@btype Index to type record of the direct or indirect virtual base class. The

class name can be obtained from this record.
@vbptype Type index of the virtual base pointer for this base.
attribute Member attribute bit field.
vbpoff Numeric leaf specifying the offset of the virtual base pointer from the

address point of the class for this virtual base.
vboff Numeric leaf specifying the index into the virtual base displacement

table of the entry that contains the displacement of the virtual base.
The displacement is relative to the address point of the class plus
vbpoff.

(0x0403) Enumeration Name and Value

This leaf specifies the name and value of an enumerate within an enumeration.

2 2 * *
LF_ENUMERATE attribute value name

attribute Member attribute bit field.
value Numeric leaf specifying the value of the enumeration.
name Length-prefixed name of the member field.

(0x0404) Friend Function

This leaf specifies a friend function.

2 2 *
LF_FRIENDFCN @type name

@type Index to type record of the friend function.
name Length-prefixed name of friend function.

(0x0405) Index To Another Type Record

2 2
LF_INDEX @index

index Type index. This field is emitted by the compiler when a complex list
needs to be split during writing.

Tool Interface Standards (TIS) Formats Specification for Windows 45
Version 1.0

Microsoft Symbol and Type Information

(0x0406) Data Member

This leaf specifies non-static data members of a class.

2 2 2 * *
LF_MEMBER @type attribute offset name

@type Index to type record for field.
attribute Member attribute bit field.
offset Numeric leaf specifying the offset of field in the structure.
name Length-prefixed name of the member field.

(0x0407) Static Data Member

This leaf specifies the static data member of a class. Once a static data member has been found
in this list, its symbol is found by qualifying the name with its class (T::name) and then
searching the symbol table for a symbol by that name with the correct type index.

2 2 2 *
LF_STMEMBER @type attribute name

@type Index to type record for field.
attribute Member attribute bit field.
name Length-prefixed name of the member field.

(0x0408) Method

This leaf specifies the overloaded member functions of a class. This type record can also be
used to specify a non-overloaded method, but is inefficient. The LF_ONEMETHOD record
should be used for non-overloaded methods.

2 2 2 *
LF_METHOD count @mList name

count Number of occurrences of function within the class. If the function is
overloaded, there will be multiple entries in the method list.

@mList Type index of method list.
name Length-prefixed name of method.

(0x0409) Nested Type Definition

This leaf specifies nested type definition with classes, structures, unions, or enums.

2 2 *
LF_NESTEDTYPE @index name

@index Type index of nested type.

46 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

name Length-prefixed name of type.

(0x040a) Virtual Function Table Pointer

This leaf specifies virtual table pointers within the class. It is a requirement that this record be
emitted in the field list before any virtual functions are emitted to the field list.

2 2
LF_VFUNCTAB @type

@type Index to the pointer record describing the pointer. The pointer will in
turn have an LF_VTSHAPE type record as the underlying type. Note
that the offset of the virtual function table pointer from the address
point of the class is always zero.

(0x040b) Friend Class

This leaf specifies a friend class.

2 2
LF_FRIENDCLS @type

@type Index to type record of the friend class. The name of the class can be
obtained from the referenced record.

(0x040c) One Method

This record is used to specify a method of a class that is not overloaded.

2 2 2 4 *
LF_ONEMETHOD attribute @type vbaseoff name

attribute Method attribute.
@type Type index of method.
vbaseoff Offset in virtual function table if virtual method. If the method is not

virtual, then this field is not present.
name Length-prefixed name of method.

(0x040d) Virtual Function Offset

This record is used to specify a virtual function table pointer at a non-zero offset relative to the
address point of a class.

2 2 4
LF_VFUNCOFF @type offset

@type Type index of virtual function table pointer.

Tool Interface Standards (TIS) Formats Specification for Windows 47
Version 1.0

Microsoft Symbol and Type Information

offset Offset of virtual function table pointer relative to address point of
class.

48 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

4. Numeric Leaves
The following leaves are used in symbols and types where actual numeric values need to be
specified. When the symbol or type processor knows that a numeric leaf is present, the next 2
bytes of the record are examined. If the value of these 2 bytes is less than LF_NUMERIC
(0x8000), then the 2 bytes contain the actual value. If the value is greater than or equal to
LF_NUMERIC (0x8000), then the numeric data follows the 2-byte leaf index and is contained in
the number of bytes specified by the leaf index. Note that the LF_UCHAR numeric field is not
necessary, because the value of the 8-bit unsigned character is less than 0x8000. Routines
reading numeric fields must handle the potential non alignment of the data fields.

(0x8000) Signed Char

2 1
LF_CHAR char

char 8-bit value.

(0x8001) Signed Short

2 2
LF_SHORT short

short 16-bit signed value.

(0x8002) Unsigned Short

2 2
LF_USHORT ushort

ushort 16-bit unsigned value.

(0x8003) Signed Long

2 4
LF_LONG long

long 32-bit signed value.

(0x8004) Unsigned Long

2 4
LF_ULONG ulong

ulong 32-bit unsigned value.

Tool Interface Standards (TIS) Formats Specification for Windows 49
Version 1.0

Microsoft Symbol and Type Information

(0x8005) 32-bit Float

2 4
LF_REAL32 real32

real32 32-bit floating-point value.

(0x8006) 64-bit Float

2 8
LF_REAL64 real64

real64 64-bit floating-point value.

(0x8007) 80-bit Float

2 10
LF_REAL80 real80

real80 80-bit floating-point value.

(0x8008) 128 Bit Float

2 16
LF_REAL128 real128

real128 128-bit floating-point value.

(0x8009) Signed Quad Word

2 8
LF_QUADWORD quadword

quadword 64-bit signed value.

(0x800a) Unsigned Quad Word

2 8
LF_UQUADWORD uquadword

uquadword 64-bit unsigned value.

50 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

(0x800b) 48-bit Float

2 6
LF_REAL48 real48

real48 48-bit floating-point value.

(0x800c) 32-bit Complex

2 4 4
LF_COMPLEX32 real imaginary

real Real part of complex number.
imaginary Imaginary part of complex number.

(0x800d) 64-bit Complex

2 8 8
LF_COMPLEX64 real imaginary

real Real part of complex number.
imaginary Imaginary part of complex number.

(0x800e) 80-bit Complex

2 10 10
LF_COMPLEX80 real imaginary

real Real part of complex number.
imaginary Imaginary part of complex number.

(0x800f) 128-bit Complex

2 16 16
LF_COMPLEX128 real imaginary

real Real part of complex number.
imaginary Imaginary part of complex number.

(0x8010) Variable-length String

2 2 *
LF_VARSTRING length string

length Length of following string.

Tool Interface Standards (TIS) Formats Specification for Windows 51
Version 1.0

Microsoft Symbol and Type Information

string Variable-length string.

52 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

5. Predefined Primitive Types

5.1. Format of Reserved Types
Types 0 - 4095 (0 - 0x0fff) are reserved. These values are interpreted as bit fields with the
following sizes and meanings.

11 10 - 8 7 - 4 3 2 - 0
reserved mode type reserved size

type One of the following types:
0x00 Special
0x01 Signed integral value
0x02 Unsigned integral value
0x03 Boolean
0x04 Real
0x05 Complex
0x06 Special2
0x07 Real int value
0x08 Reserved
0x09 Reserved
0x0a Reserved
0x0b Reserved
0x0c Reserved
0x0d Reserved
0x0e Reserved
0x0f Reserved for debugger expression evaluator

size Enumerated value for each of the types.

Type = special
0x00 No type
0x01 Absolute symbol
0x02 Segment
0x03 Void
0x04 Basic 8-byte currency value
0x05 Near Basic string
0x06 Far Basic string
0x07 Untranslated type from previous Microsoft symbol formats

Type = signed/unsigned integral and Boolean values
0x00 1 byte
0x01 2 byte
0x02 4 byte
0x03 8 byte
0x04 Reserved
0x05 Reserved
0x06 Reserved
0x07 Reserved

Tool Interface Standards (TIS) Formats Specification for Windows 53
Version 1.0

Microsoft Symbol and Type Information

Type = real and complex
0x00 32 bit
0x01 64 bit
0x02 80 bit
0x03 128 bit
0x04 48 bit
0x05 Reserved
0x06 Reserved
0x07 Reserved

Type = special2
0x00 Bit
0x01 Pascal CHAR

Type = Real int
0x00 Char
0x01 Wide character
0x02 2-byte signed integer
0x03 2-byte unsigned integer
0x04 4-byte signed integer
0x05 4-byte unsigned integer
0x06 8-byte signed integer
0x07 8-byte unsigned integer

mode Mode
0x00 Direct; not a pointer
0x01 Near pointer
0x02 Far pointer
0x03 Huge pointer
0x04 32-bit near pointer
0x05 32-bit far pointer
0x06 64-bit near pointer
0x07 Reserved

54 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

5.2. Primitive Type Listing

Special Types

T_NOTYPE 0x0000 Uncharacterized type (no type)
T_ABS 0x0001 Absolute symbol
T_SEGMENT 0x0002 Segment type
T_VOID 0x0003 Void
T_PVOID 0x0103 Near pointer to void
T_PFVOID 0x0203 Far pointer to void
T_PHVOID 0x0303 Huge pointer to void
T_32PVOID 0x0403 32-bit near pointer to void
T_32PFVOID 0x0503 32-bit far pointer to void
T_CURRENCY 0x0004 Basic 8-byte currency value
T_NBASICSTR 0x0005 Near Basic string
T_FBASICSTR 0x0006 Far Basic string
T_NOTTRANS 0x0007 Untranslated type record from Microsoft symbol format
T_BIT 0x0060 Bit
T_PASCHAR 0x0061 Pascal CHAR

Character Types

T_CHAR 0x0010 8-bit signed
T_UCHAR 0x0020 8-bit unsigned
T_PCHAR 0x0110 Near pointer to 8-bit signed
T_PUCHAR 0x0120 Near pointer to 8-bit unsigned
T_PFCHAR 0x0210 Far pointer to 8-bit signed
T_PFUCHAR 0x0220 Far pointer to 8-bit unsigned
T_PHCHAR 0x0310 Huge pointer to 8-bit signed
T_PHUCHAR 0x0320 Huge pointer to 8-bit unsigned
T_32PCHAR 0x0410 16:32 near pointer to 8-bit signed
T_32PUCHAR 0x0420 16:32 near pointer to 8-bit unsigned
T_32PFCHAR 0x0510 16:32 far pointer to 8-bit signed
T_32PFUCHAR 0x0520 16:32 far pointer to 8-bit unsigned

Real Character Types

T_RCHAR 0x0070 Real char
T_PRCHAR 0x0170 Near pointer to a real char
T_PFRCHAR 0x0270 Far pointer to a real char
T_PHRCHAR 0x0370 Huge pointer to a real char
T_32PRCHAR 0x0470 16:32 near pointer to a real char
T_32PFRCHAR 0x0570 16:32 far pointer to a real char

Tool Interface Standards (TIS) Formats Specification for Windows 55
Version 1.0

Microsoft Symbol and Type Information

Wide Character Types

T_WCHAR 0x0071 Wide char
T_PWCHAR 0x0171 Near pointer to a wide char
T_PFWCHAR 0x0271 Far pointer to a wide char
T_PHWCHAR 0x0371 Huge pointer to a wide char
T_32PWCHAR 0x0471 16:32 near pointer to a wide char
T_32PFWCHAR 0x0571 16:32 far pointer to a wide char

Real 16-bit Integer Types

T_INT2 0x0072 Real 16-bit signed int
T_UINT2 0x0073 Real 16-bit unsigned int
T_PINT2 0x0172 Near pointer to 16-bit signed int
T_PUINT2 0x0173 Near pointer to 16-bit unsigned int
T_PFINT2 0x0272 Far pointer to 16-bit signed int
T_PFUINT2 0x0273 Far pointer to 16-bit unsigned int
T_PHINT2 0x0372 Huge pointer to 16-bit signed int
T_PHUINT2 0x0373 Huge pointer to 16-bit unsigned int
T_32PINT2 0x0472 16:32 near pointer to 16-bit signed int
T_32PUINT2 0x0473 16:32 near pointer to 16-bit unsigned int
T_32PFINT2 0x0572 16:32 far pointer to 16-bit signed int
T_32PFUINT2 0x0573 16:32 far pointer to 16-bit unsigned int

16-bit Short Types

T_SHORT 0x0011 16-bit signed
T_USHORT 0x0021 16-bit unsigned
T_PSHORT 0x0111 Near pointer to 16-bit signed
T_PUSHORT 0x0121 Near pointer to 16-bit unsigned
T_PFSHORT 0x0211 Far pointer to 16-bit signed
T_PFUSHORT 0x0221 Far pointer to 16-bit unsigned
T_PHSHORT 0x0311 Huge pointer to 16-bit signed
T_PHUSHORT 0x0321 Huge pointer to 16-bit unsigned
T_32PSHORT 0x0411 16:32 near pointer to 16-bit signed
T_32PUSHORT 0x0421 16:32 near pointer to 16-bit unsigned
T_32PFSHORT 0x0511 16:32 far pointer to 16-bit signed
T_32PFUSHORT 0x0521 16:32 far pointer to 16-bit unsigned

Real 32-bit Integer Types

T_INT4 0x0074 Real 32-bit signed int
T_UINT4 0x0075 Real 32-bit unsigned int
T_PINT4 0x0174 Near pointer to 32-bit signed int
T_PUINT4 0x0175 Near pointer to 32-bit unsigned int
T_PFINT4 0x0274 Far pointer to 32-bit signed int
T_PFUINT4 0x0275 Far pointer to 32-bit unsigned int
T_PHINT4 0x0374 Huge pointer to 32-bit signed int
T_PHUINT4 0x0375 Huge pointer to 32-bit unsigned int
T_32PINT4 0x0474 16:32 near pointer to 32-bit signed int
T_32PUINT4 0x0475 16:32 near pointer to 32-bit unsigned int
T_32PFINT4 0x0574 16:32 far pointer to 32-bit signed int
T_32PFUINT4 0x0575 16:32 far pointer to 32-bit unsigned int

56 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

32-bit Long Types

T_LONG 0x0012 32-bit signed
T_ULONG 0x0022 32-bit unsigned
T_PLONG 0x0112 Near pointer to 32-bit signed
T_PULONG 0x0122 Near pointer to 32-bit unsigned
T_PFLONG 0x0212 Far pointer to 32-bit signed
T_PFULONG 0x0222 Far pointer to 32-bit unsigned
T_PHLONG 0x0312 Huge pointer to 32-bit signed
T_PHULONG 0x0322 Huge pointer to 32-bit unsigned
T_32PLONG 0x0412 16:32 near pointer to 32-bit signed
T_32PULONG 0x0422 16:32 near pointer to 32-bit unsigned
T_32PFLONG 0x0512 16:32 far pointer to 32-bit signed
T_32PFULONG 0x0522 16:32 far pointer to 32-bit unsigned

Real 64-bit int Types

T_INT8 0x0076 64-bit signed int
T_UINT8 0x0077 64-bit unsigned int
T_PINT8 0x0176 Near pointer to 64-bit signed int
T_PUINT8 0x0177 Near pointer to 64-bit unsigned int
T_PFINT8 0x0276 Far pointer to 64-bit signed int
T_PFUINT8 0x0277 Far pointer to 64-bit unsigned int
T_PHINT8 0x0376 Huge pointer to 64-bit signed int
T_PHUINT8 0x0377 Huge pointer to 64-bit unsigned int
T_32PINT8 0x0476 16:32 near pointer to 64-bit signed int
T_32PUINT8 0x0477 16:32 near pointer to 64-bit unsigned int
T_32PFINT8 0x0576 16:32 far pointer to 64-bit signed int
T_32PFUINT8 0x0577 16:32 far pointer to 64-bit unsigned int

64-bit Integral Types

T_QUAD 0x0013 64-bit signed
T_UQUAD 0x0023 64-bit unsigned
T_PQUAD 0x0113 Near pointer to 64-bit signed
T_PUQUAD 0x0123 Near pointer to 64-bit unsigned
T_PFQUAD 0x0213 Far pointer to 64-bit signed
T_PFUQUAD 0x0223 Far pointer to 64-bit unsigned
T_PHQUAD 0x0313 Huge pointer to 64-bit signed
T_PHUQUAD 0x0323 Huge pointer to 64-bit unsigned
T_32PQUAD 0x0413 16:32 near pointer to 64-bit signed
T_32PUQUAD 0x0423 16:32 near pointer to 64-bit unsigned
T_32PFQUAD 0x0513 16:32 far pointer to 64-bit signed
T_32PFUQUAD 0x0523 16:32 far pointer to 64-bit unsigned

32-bit Real Types

T_REAL32 0x0040 32-bit real
T_PREAL32 0x0140 Near pointer to 32-bit real
T_PFREAL32 0x0240 Far pointer to 32-bit real
T_PHREAL32 0x0340 Huge pointer to 32-bit real
T_32PREAL32 0x0440 16:32 near pointer to 32-bit real
T_32PFREAL32 0x0540 16:32 far pointer to 32-bit real

Tool Interface Standards (TIS) Formats Specification for Windows 57
Version 1.0

Microsoft Symbol and Type Information

48-bit Real Types

T_REAL48 0x0044 48-bit real
T_PREAL48 0x0144 Near pointer to 48-bit real
T_PFREAL48 0x0244 Far pointer to 48-bit real
T_PHREAL48 0x0344 Huge pointer to 48-bit real
T_32PREAL48 0x0444 16:32 near pointer to 48-bit real
T_32PFREAL48 0x0544 16:32 far pointer to 48-bit real

64-bit Real Types

T_REAL64 0x0041 64-bit real
T_PREAL64 0x0141 Near pointer to 64-bit real
T_PFREAL64 0x0241 Far pointer to 64-bit real
T_PHREAL64 0x0341 Huge pointer to 64-bit real
T_32PREAL64 0x0441 16:32 near pointer to 64-bit real
T_32PFREAL64 0x0541 16:32 far pointer to 64-bit real

80-bit Real Types

T_REAL80 0x0042 80-bit real
T_PREAL80 0x0142 Near pointer to 80-bit real
T_PFREAL80 0x0242 Far pointer to 80-bit real
T_PHREAL80 0x0342 Huge pointer to 80-bit real
T_32PREAL80 0x0442 16:32 near pointer to 80-bit real
T_32PFREAL80 0x0542 16:32 far pointer to 80-bit real

128-bit Real Types

T_REAL128 0x0043 128-bit real
T_PREAL128 0x0143 Near pointer to 128-bit real
T_PFREAL128 0x0243 Far pointer to 128-bit real
T_PHREAL128 0x0343 Huge pointer to 128-bit real
T_32PREAL128 0x0443 16:32 near pointer to 128-bit real
T_32PFREAL128 0x0543 16:32 far pointer to 128-bit real

32-bit Complex Types

T_CPLX32 0x0050 32-bit complex
T_PCPLX32 0x0150 Near pointer to 32-bit complex
T_PFCPLX32 0x0250 Far pointer to 32-bit complex
T_PHCPLX32 0x0350 Huge pointer to 32-bit complex
T_32PCPLX32 0x0450 16:32 near pointer to 32-bit complex
T_32PFCPLX32 0x0550 16:32 far pointer to 32-bit complex

58 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

64-bit Complex Types

T_CPLX64 0x0051 64-bit complex
T_PCPLX64 0x0151 Near pointer to 64-bit complex
T_PFCPLX64 0x0251 Far pointer to 64-bit complex
T_PHCPLX64 0x0351 Huge pointer to 64-bit complex
T_32PCPLX64 0x0451 16:32 near pointer to 64-bit complex
T_32PFCPLX64 0x0551 16:32 far pointer to 64-bit complex

80-bit Complex Types

T_CPLX80 0x0052 80-bit complex
T_PCPLX80 0x0152 Near pointer to 80-bit complex
T_PFCPLX80 0x0252 Far pointer to 80-bit complex
T_PHCPLX80 0x0352 Huge pointer to 80-bit complex
T_32PCPLX80 0x0452 16:32 near pointer to 80-bit complex
T_32PFCPLX80 0x0552 16:32 far pointer to 80-bit complex

128-bit Complex Types

T_CPLX128 0x0053 128-bit complex
T_PCPLX128 0x0153 Near pointer to 128-bit complex
T_PFCPLX128 0x0253 Far pointer to 128-bit complex
T_PHCPLX128 0x0353 Huge pointer to 128-bit real
T_32PCPLX128 0x0453 16:32 near pointer to 128-bit complex
T_32PFCPLX128 0x0553 16:32 far pointer to 128-bit complex

Boolean Types

T_BOOL08 0x0030 8-bit Boolean
T_BOOL16 0x0031 16-bit Boolean
T_BOOL32 0x0032 32-bit Boolean
T_BOOL64 0x0033 64-bit Boolean
T_PBOOL08 0x0130 Near pointer to 8-bit Boolean
T_PBOOL16 0x0131 Near pointer to 16-bit Boolean
T_PBOOL32 0x0132 Near pointer to 32-bit Boolean
T_PBOOL64 0x0133 Near pointer to 64-bit Boolean
T_PFBOOL08 0x0230 Far pointer to 8-bit Boolean
T_PFBOOL16 0x0231 Far pointer to 16-bit Boolean
T_PFBOOL32 0x0232 Far pointer to 32-bit Boolean
T_PFBOOL32 0x0233 Far pointer to 64-bit Boolean
T_PHBOOL08 0x0330 Huge pointer to 8-bit Boolean
T_PHBOOL16 0x0331 Huge pointer to 16-bit Boolean
T_PHBOOL32 0x0332 Huge pointer to 32-bit Boolean
T_PHBOOL64 0x0333 Huge pointer to 64-bit Boolean
T_32PBOOL08 0x0430 16:32 near pointer to 8-bit Boolean
T_32PBOOL16 0x0431 16:32 near pointer to 16-bit Boolean
T_32PBOOL32 0x0432 16:32 near pointer to 32-bit Boolean
T_32PBOOL64 0x0433 16:32 near pointer to 64-bit Boolean
T_32PFBOOL08 0x0530 16:32 far pointer to 8-bit Boolean
T_32PFBOOL16 0x0531 16:32 far pointer to 16-bit Boolean
T_32PFBOOL32 0x0532 16:32 far pointer to 32-bit Boolean
T_32PFBOOL64 0x0533 16:32 far pointer to 64-bit Boolean

Tool Interface Standards (TIS) Formats Specification for Windows 59
Version 1.0

Microsoft Symbol and Type Information

6. Register Enumerations
When the compiler emits a symbol that has been enregistered, the symbol record specifies the
register by a register enumeration value. The enumeration is unique to each hardware
architecture supported.

6.1. Intel 80x86/80x87 Architectures
0 none

8-bit Registers

1 AL
2 CL
3 DL
4 BL
5 AH
6 CH
7 DH
8 BH

16-bit Registers

9 AX
10 CX
11 DX
12 BX
13 SP
14 BP
15 SI
16 DI

32-bit Registers

17 EAX
18 ECX
19 EDX
20 EBX
21 ESP
22 EBP
23 ESI
24 EDI

Segment Registers

25 ES
26 CS
27 SS
28 DS
29 FS
30 GS

60 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

Special Cases

31 IP
32 FLAGS
33 EIP
34 EFLAGS

PCODE Registers

40 TEMP
41 TEMPH
42 QUOTE
43-47 Reserved

System Registers

80 CR0
81 CR1
82 CR2
83 CR3
90 DR0
91 DR1
92 DR2
93 DR3
94 DR4
95 DR5
96 DR6
97 DR7

Register Extensions for 80x87

128 ST(0)
130 ST(2)
131 ST(3)
132 ST(4)
133 ST(5)
134 ST(6)
135 ST(7)
136 CONTROL
137 STATUS
138 TAG
139 FPIP
140 FPCS
141 FPDO
142 FPDS
143 ISEM
144 FPEIP
145 FPEDO

Tool Interface Standards (TIS) Formats Specification for Windows 61
Version 1.0

Microsoft Symbol and Type Information

6.2. Motorola 68000 Architectures
0 Data register 0
1 Data register 1
2 Data register 2
3 Data register 3
4 Data register 4
5 Data register 5
6 Data register 6
7 Data register 7
8 Address register 0
9 Address register 1
10 Address register 2
11 Address register 3
12 Address register 4
13 Address register 5
14 Address register 6
15 Address register 7
16 ??CV_R68_CCR
17 ??CV_R68_SR
18 ??CV_R68_USP
19 ??CV_R68_MSP
20 ??CV_R68_SFC
21 ??CV_R68_DFC
22 ??CV_R68_CACR
23 ??CV_R68_VBR
24 ??CV_R68_CAAR
25 ??CV_R68_ISP
26 ??CV_R68_PC
27 Reserved
28 ??CV_R68_FPCR
29 ??CV_R68_FPSR
30 ??CV_R68_FPIAR
31 Reserved
32 Floating-point 0
33 Floating-point 1
34 Floating-point 2
35 Floating-point 3
36 Floating-point 4
37 Floating-point 5
38 Floating-point 6
39 Floating-point 7
40 - 50 Reserved
51 CV_R68_PSR
52 CV_R68_PCSR

62 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

6.3. MIPS Architectures

Integer Register

0 NoRegister
10 IntZero
11 IntAT
12 IntV0
13 IntV1
14 IntA0
15 IntA1
16 IntA2
17 IntA3
18 IntT0
19 IntT1
20 IntT2
21 IntT3
22 IntT4
23 IntT5
24 IntT6
25 IntT7
26 IntS0
27 IntS1
28 IntS2
29 IntS3
30 IntS4
31 IntS5
32 IntS6
33 IntS7
34 IntT8
35 IntT9
36 Int KT0
37 IntKT1
38 IntGP
39 IntSP
40 IntS8
41 IntRA
42 Int Lo
43 Int Hi

50 Fir
51 PSR

60 Floating-point register 0
61 Floating-point register 1
62 Floating-point register 2
63 Floating-point register 3
64 Floating-point register 4
65 Floating-point register 5
66 Floating-point register 6
67 Floating-point register 7
68 Floating-point register 8

Tool Interface Standards (TIS) Formats Specification for Windows 63
Version 1.0

Microsoft Symbol and Type Information

69 Floating-point register 9
70 Floating-point register 10
71 Floating-point register 11
72 Floating-point register 12
73 Floating-point register 13
74 Floating-point register 14
75 Floating-point register 15
76 Floating-point register 16
77 Floating-point register 17
78 Floating-point register 18
79 Floating-point register 19
80 Floating-point register 20
81 Floating-point register 21
82 Floating-point register 22
83 Floating-point register 23
84 Floating-point register 24
85 Floating-point register 25
86 Floating-point register 26
87 Floating-point register 27
88 Floating-point register 28
89 Floating-point register 29
90 Floating-point register 30
91 Floating-point register 31

92 Floating-point status register

64 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

7. Symbol and Type Format for Microsoft
Executables

7.1. Introduction
This section describes the format used to embed debugging information into the executable file.

7.2. Debug Information Format
The debug information format encompasses a block of data that goes into the .exe file at a
location dependent upon the executable file format. The version of the debug information is
specified by a signature that is contained within the debug information. The signature has the
format of NBxx, where xx is the version number and has the following meanings:

NB00 Not supported.
NB01 Not supported.
NB02 Linked by a Microsoft LINK, version 5.10, or equivalent OEM linker.
NB03 Not supported.
NB04 Not supported.
NB05 Emitted by LINK, version 5.20 and later linkers for a file before it has

been packed.
NB06 Not supported.
NB07 Used for Quick C for Windows 1.0 only.
NB08 Used by Microsoft CodeView debugger, versions 4.00 through 4.05,

for a file after it has been packed. Microsoft CodeView,, version 4.00
through 4.05 will not process a file that does not have this signature.

NB09 Used by Microsoft CodeView, version 4.10 for a file after it has been
packed. Microsoft CodeView 4.10 will not process a file that does not
have this signature.

The method for finding the debug information depends upon the executable format.

OMF

For OMF executables, the debug information is at the end of the .exe file, i.e., after the header
plus load image, the overlays, and the Windows resource compiler information. The lower
portion of the file is unaffected by the additional data. The last eight bytes of the file contain a
signature and a long file offset from the end of the file (lfoBase). The long offset indicates the
position in the file (relative to the end of the file) of the base address.

The value

lfaBase = length of the file - lfoBase

gives the base address of the start of the Symbol and Type OMF information relative to the
beginning of the file.

Tool Interface Standards (TIS) Formats Specification for Windows 65
Version 1.0

Microsoft Symbol and Type Information

executable header
executable code + ...
NBxx Signature at lfaBase
lfoDirectory Offset of directory from base address (lfoDir)
Subsection tables sstModule, sstType, sstLibraries, ...

.

.

.
Subsection Directory At file offset lfaBase + lfoDir
NBxx Signature
lfoBase Offset of repeated signature from end of file

PE Format

For PE format executables, the base address lfaBase is found by examining the executable
header. Note, currently Microsoft code uses the same method that is used for OMF format
executables to find the debug information.

executable header Contains pointer to debug information
executable code + ...
NBxx Signature at lfaBase
lfoDirectory Offset of directory from base address (lfoDir)
Subsection tables sstModule, sstType, sstLibraries, ...

.

.

.
Subsection Directory At file offset lfaBase + lfoDir
other information

All other file offsets in the Symbol and Type OMF are relative to lfaBase. At the base address,
the signature is repeated, followed by the long displacement to the subsection directory (lfoDir).
All subsections start on a long word boundary and are designed to maintain natural alignment
internally in each subsection and within the subsection directory.

66 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

7.3. Subsection Directory
The subsection directory has the following format:

Directory header
Directory entry 0
Directory entry 1

.

.

.
Directory entry n

The subsection directory is prefixed with a directory header structure indicating size and number
of subsection directory entries that follow.

2 2 4 4 4
cbDirHeader cbDirEntry cDir lfoNextDir flags

cbDirHeader Length of directory header.
cbDirEntry Length of each directory entry.
cDir Number of directory entries.
lfoNextDir Offset from lfaBase of next directory. This field is currently unused,

but is intended for use by the incremental linker to point to the next
directory containing Symbol and Type OMF information from an
incremental link.

flags Flags describing directory and subsection tables. No values have been
defined for this field.

The directory header structure is followed by the directory entries, which specify the subsection
type, module index, if applicable, the subsection offset, and subsection size.

2 2 4 4
subsection iMod lfo cb

subsection Subdirectory index. See the table below for a listing of the valid
subsection indices.

iMod Module index. This number is 1 based and zero (0) is never a valid
index. The index 0xffff is reserved for tables that are not associated
with a specific module. These tables include sstLibraries,
sstGlobalSym, sstGlobalPub, and sstGlobalTypes.

lfo Offset from the base address lfaBase.
cb Number of bytes in subsection.

Tool Interface Standards (TIS) Formats Specification for Windows 67
Version 1.0

Microsoft Symbol and Type Information

There is no requirement for a particular subsection to exist for a particular module. There is a
preferred order for subsections within the Symbol and Type OMF portion and the subsection
directory of the file, as emitted by the linker (NB05 signature). The preferred order is the
following:

sstModule1 Module 1
. .

sstModulen Module n
sstTypes1 Module 1
sstPublics1 Module 1

sstSymbols1 Module 1
sstSrcModule1 Module 1

.
sstTypesn Module n
sstPublicsn Module n

sstSymbolsn Module n
sstSrcModulen Module n

sstLibraries
directory

However, if the tables are not written in this order by the linker, the CVPACK utility will sort
the subsection table into this order and read the subsections in this order by seeking the correct
location. The net effect is that packing will be less efficient, but it will work.

CVPACK will write the Symbol and Type OMF back to the file in the order listed below. The
Microsoft debugger requires that the sstModule entries be first and sequential in the subsection
directory. For performance reasons, it is recommended that the order of the subsections in the
file match the order of the subsection directory entries.

For signatures prior to NB09, the packed file has the following subsections and ordering:

NBxx Signature
lfoDir Directory offset

sstModule1 Module 1
. .

sstModulen Module n
sstAlignSym1 Module 1
sstSrcModule1 Module 1

.
sstAlignSymn Module n
sstSrcModulen Module n
sstGlobalPub Global Publics
sstGlobalSym Global Symbols
sstLibraries Libraries

sstGlobalTypes Global Types
Directory

NBxx Signature, if OMF executable
lfoBase Offset of base, if OMF executable

68 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

For NB09 signatures, the packed file has the following subsections and ordering:

NBxx Signature
lfoDir Directory offset

sstModule1 Module 1
. .

sstModulen Module n
sstAlignSym1 Module 1
sstSrcModule1 Module 1

.
sstAlignSymn Module n
sstSrcModulen Module n
sstGlobalPub Global Publics
sstGlobalSym Global Symbols
sstLibraries Libraries

sstGlobalTypes Global Types
sstStaticSym Static Symbols
sstFileIndex File Index

Directory
NBxx signature

lfoBase offset

7.4. SubSection Types (sst...)
All values not defined in the following list are reserved for future use:

sstModule 0x120
sstTypes 0x121
sstPublic 0x122
sstPublicSym 0x123
sstSymbols 0x124
sstAlignSym 0x125
sstSrcLnSeg 0x126
sstSrcModule 0x127
sstLibraries 0x128
sstGlobalSym 0x129
sstGlobalPub 0x12a
sstGlobalTypes 0x12b
sstMPC 0x12c
sstSegMap 0x12d
sstSegName 0x12e
sstPreComp 0x12f
unused 0x130
reserved 0x131
reserved 0x132
sstFileIndex 0x133
sstStaticSym 0x134

Tool Interface Standards (TIS) Formats Specification for Windows 69
Version 1.0

Microsoft Symbol and Type Information

(0x0120) sstModule

This describes the basic information about an object module, including code segments, module
name, and the number of segments for the modules that follow. Directory entries for sstModules
precede all other subsection directory entries.

2 2 2 2 * *
ovlNumber iLib cSeg Style SegInfo Name

ovlNumber Overlay number.
iLib Index into sstLibraries subsection if this module was linked from a

library
cSeg Count or number of code segments to which this module contributes.
Style Debugging style for this module. Currently only "CV" is defined. A

module can have only one debugging style. If a module contains
debugging information in an unrecognized style, the information will
be discarded.

SegInfo Detailed information about each segment to which code is
contributed. This is an array of cSeg count segment information
descriptor structures.

Name Length-prefixed name of module

SegInfo is a structure that describes each segment to which a module contributes code. It is
formatted as follows:

2 2 4 4
Seg pad offset cbSeg

Seg Segment that this structure describes.
pad Padding to maintain alignment This field is reserved for future use

and must be emitted as zeroes.
offset Offset in segment where the code starts.
cbSeg Count or number of bytes of code in the segment.

(0x0121) sstTypes

The linker emits one of these subsections for every object file that contains a $$TYPES segment.
CVPACK combines all of these subsections into an sstGlobalTypes subsection and deletes the
sstTypes tables. The sstTypes table contains the contents of the $$TYPES segment, except that
addresses within the $$TYPES segment have been fixed by the linker. (See also sstPreComp.)

(0x0122) sstPublic

The linker fills each subsection of this type with entries for the public symbols of a module. The
CVPACK utility combines all of the sstPublics subsections into an sstGlobalPub subsection.
This table has been replaced with the sstPublicSym, but is retained for compatibility with
previous linkers.

70 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

2/4 2 2 *
offset seg type name

offset Offset of public within segment. This will be a 16-bit offset unless
the executable is a 32-bit executable. Note that if any public symbols
are 16:32 model, then all publics are emitted as 16:32 addresses.

seg Segment index.
type Type index of the symbol. This will be zero if the module was

compiled without Microsoft symbol and type information.
name Length-prefixed name of public

(0x0123) sstPublicSym

This table replaces the sstPublic subsection. The format of the public symbols contained in this
table is that of an S_PUB16 or S_PUB32 symbol, as defined in Sections 2.3 and 2.4. This
allows an executable to contain both 16:16 and 16:32 public symbols for mixed-mode
executable files. As with symbols sections, public section records must start on a 4-byte
boundary.

(0x0124) sstSymbols

The linker emits one of these subsections for every object file that contains a $$SYMBOLS
segment. The sstSymbols table contains the contents of the $$SYMBOLS segment, except that
addresses within the $$SYMBOLS segment have been fixed by the linker. The CVPACK utility
moves global symbols from the sstSymbols subsection to the sstGlobalSum subsection during
packing. When the remaining symbols are written executables, the subsection type is changed to
sstAlignSym.

(0x0125) sstAlignSym

CVPACK writes the remaining unpacked symbols for a module back to the executable in a
subsection of this type. All symbols have been padded to fall on a long word boundary, and the
lexical scope linkage fields have been initialized.

(0x0126) sstSrcLnSeg

The linker fills in each subsection of this type with information obtained from any LINNUM
records in the module. This table has been replaced by the sstSrcModule, but is retained for
compatibility with previous linkers. CVPACK rewrites sstSrcLnSeg tables to sstSrcModule
tables.

* 2 2 *
name seg cPair line/offset

name Length-prefixed name of source file.
seg Segment.
cPair Count or number of line number offset pairs to follow.

Tool Interface Standards (TIS) Formats Specification for Windows 71
Version 1.0

Microsoft Symbol and Type Information

line/offset Line/offset pairs. This pair consists of the line number followed by
the offset of the start of the code for that line within the segment. All
offsets are relative to the beginning of the segment, not the start of the
contribution of the module to the segment. For example, if the
module contributes to segment _TEXT starting at offset 0x0100, and
the code offset of the first line number is 0x0010 relative to the
module, it will show up in the subsection as 0x0110. The offsets are
16 bits if the executable is a 16:16 executable. If any segment in the
executable is 16:32 model, then all offsets in the line/offset pairs are
32-bit offsets.

(0x0127) sstSrcModule

The following table describes the source line number for addressing mapping information for a
module. The table permits the description of a module containing multiple source files with
each source file contributing code to one or more code segments. The base addresses of the
tables described below are all relative to the beginning of the sstSrcModule table.

Module header
Information for source file 1
Information for segment 1
Information for segment 2

.
Information for source file 2
Information for segment 1
Information for segment 2

.

.

The module header structure describes the source file and code segment organization of the
module.

2 2 4*cFile 8*cSeg 2*cSeg
cFile cSeg baseSrcFile start/end seg

cFile Number of source files contributing code to segments.
cSeg Number of code segments receiving code from this module.
baseSrcFile An array of base offsets from the beginning of the sstSrcModule table.
start/end An array of two 32-bit offsets per segment that receives code from

this module. The first offset is the offset within the segment of the
first byte of code from this module. The second offset is the ending
address of the code from this module. The order of these pairs
corresponds to the ordering of the segments in the seg array. Zeroes
in these entries means that the information is not known, and the file
and line tables described below need to be examined to determine if
an address of interest is contained within the code from this module.

seg An array of segment indices that receive code from this module. If
the number of segments is not even, two pad characters are inserted to
maintain natural alignment.

72 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

The file table describes the code segments that receive code from each source file.

2 2 4*cSeg 8*cSeg 2 *
cSeg pad baseSrcLn start/end cbName Name

cSeg Number of segments that receive code from this source file. If the
source file contributes code multiple times to a segment, it is reflected
in this count.

pad Pad field used to maintain alignment. This field is reserved for future
use and must be emitted as zero.

baseSrcLn An array of offsets for the line/address mapping tables for each of the
segments that receive code from this source file.

start/end An array of two 32-bit offsets per segment that receives code from
this module. The first offset is the offset within the segment of the
first byte of code from this module. The second offset is the ending
address of the code from this module. The order of these pairs
corresponds to the ordering of the segments in the seg array. Zeroes
in these entries means that the information is not known, and the file
and line tables described below need to be examined to determine if
an address of interest is contained within the code from this module.

cbName Count or number of bytes in source file name.
Name Source file name. This can be a fully or partially qualified path name.

The preferred ordering for this table is by offset order. Line number and offsets must be unique.
The line number to address mapping information is contained in a table with the following
format:

2 2 4*cPair 2*cPair
Seg cPair offset linenumber

Seg Segment index for this table.
cPair Count or number of source line pairs to follow.
offset An array of 32-bit offsets for the offset within the code segment of the

start of the line contained in the parallel array linenumber.
linenumber An array of 16-bit line numbers for the numbers of the lines in the

source file that cause code to be emitted to the code segment. This
array is parallel to the offset array. If cPair is not even, then a zero
word is emitted to maintain natural alignment in the sstSrcModule
table.

(0x0128) sstLibraries

There can be at most one sstLibraries SubSection. The format is an array of length-prefixed
names, which define all the library files used during linking. The order of this list defines the
library index number (seethe sstModules subsection). The first entry should be empty, i.e., a
zero-length string, because library indices are 1-based.

Tool Interface Standards (TIS) Formats Specification for Windows 73
Version 1.0

Microsoft Symbol and Type Information

(0x0129) sstGlobalSym

This subsection contains globally compacted symbols. The format of the table is a header
specifying the symbol and address hash functions, the length of the symbol information, the
length of the symbol hash function data, and the length of address hash function data. This is
followed by the symbol information, which followed by the symbol hash tables, and then
followed by the address hash tables. When the pack utility writes the sstGlobals subsection,
each symbol is zero-padded such that the following symbol starts on a long boundary, and the
length field is adjusted by the pad count. Note that symbol and/or address hash data can be
discarded and the globally packed symbols are linearly searched. A hash function index 0
means that no hash data exists. See Section 7.5 for more information about the hashing
functions.

The header has the following format:

2 2 4 4 4
symhash addrhash cbSymbol cbSymHashcbAddrHash

symhash Index of the symbol hash function.
addrhash Index of the address hash function.
cbSymbol Count or number of bytes in the symbol table.
cbSymHash Count or number of bytes in the symbol hash table.
cbAddrHash Count or number of bytes in the address hashing table.

Starting with the NB09 signature files, the sstGlobalSym table can contain S_ALIGN symbols to
maintain a 4-K alignment of symbols. Also, starting with NB09 signature files, the sstGlobal
can contain S_PROCREF and S_DATAREF symbols to global procedures and to global data
symbols that would not otherwise have been globally packed because of symbol type
mismatches. See Section 2.6 for more information about the S_PROCREF and S_DATAREF
symbols.

(0x012a) sstGlobalPub

This subsection contains the globally compacted public symbols from the sstPublics. The format
of the table is a header specifying the symbol and address hash functions, the length of the
symbol information, the length of the symbol hash function data, and the length of address hash
function data. This is followed by symbol information, which is followed by the symbol hash
tables, and then followed by the address hash tables. When the pack utility writes the sstGlobals
subsection, each symbol is zero-padded such that the following symbol starts on a long
boundary, and the length field of the symbol is adjusted by the pad count. Note that symbol
and/or address hash data can be discarded and the globally packed symbolscan be linearly
searched in low-memory situations. A hash function index 0 means that no hash data exists.
See Section 7.5 for more information about the hashing functions.

The header has the following format:

2 2 4 4 4
symhash addrhash cbSymbol cbSymHashcbAddrHash

symhash Index of the symbol hash function.
addrhash Index of the address hash function.

74 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

cbSymbol Count or number of bytes in the symbol table.
cbSymHash Count or number of bytes in the symbol hash table.
cbAddrHash Count or number of bytes in the address hashing table.

Starting with the NB09 signature files, the sstGlobalSym table can contain S_ALIGN symbols to
maintain a 4-K alignment of symbols.

They contain S_ALIGN symbol records to maintain a 4-K alignment of tables. Note also that
sstGlobalPub table contains S_PROCREF symbols.

(0x012b) sstGlobalTypes

This subsection contains the packed type records for the executable file. The first long word of
the subsection contains the number of types in the table. This count is followed by a count-sized
array of long offsets to the corresponding type record. As the sstGlobalTypes subsection is
written, each type record is forced to start on a long word boundary. However, the length of the
type string is not adjusted by the pad count. The remainder of the subsection contains the type
records. This table is invalid for NB05 signatures.

Types are 48-K aligned as well as naturally aligned, so linear traversal of the type table is non-
trivial. The 48-K alignment means that no type record crosses a 48-K boundary.

flags Types table flag
cType Count or number of types

offType[cType] Offset of each type See note below.
type string 0 Type string for type index 0x1000
type string 1 Type string for type index 0x1001

.
type string n Type string for type index 0x1000 + n

Note that for NB07 and NB08 executables, the type string offset is from the beginning of the
subsection table. For NB09 executables, the type string offset is from the first type record of the
sstGlobalTypes subsection. Using the offset from the first type record simplifies demand
loading of the sstGlobalTypes table.

The types table flags entry has the following format:

3 1
unused signature

unused Reserved for future use. Must be emitted as zeroes.
signature Global types table signature.

Tool Interface Standards (TIS) Formats Specification for Windows 75
Version 1.0

Microsoft Symbol and Type Information

(0x012c) sstMPC

This table is emitted by the Pcode MPC program when a segmented executable is processed into
a non-segmented executable file. The table contains the mapping from segment indices to frame
numbers.

2 2*cSeg
cSeg mpSegFrame

cSeg Count or number of segments converted
mpSegFrame Segment-to-frame mapping table. A segmented address

segment:offset is converted to a frame by mpSegFrame[segment-1]*16
+ offset

(0x012d) sstSegMap

This table contains the mapping between the logical segment indices used in the symbol table
and the physical segments where the program was loaded

There is one sstSegMap per executable or DLL.

2 cSeg Count or number of segment descriptors in table
2 cSegLog Count or number of logical segment descriptors
20 SegDesc 0 First segment descriptor

.

.
20 SegDesc N cSeg'th segment descriptor

cSeg Total number of segment descriptors.
cSegLog Total number of logical segments. All group descriptors follow the

logical segment descriptors. The number of group descriptors is given
by cSeg - cSegLog.

SegDescN Array of segment descriptors. Information about a logical segment
can be found by using logical segment number - 1 as an index into this
array. Subtract 1 because the logical segment number is 1 based.

Each element of the segment descriptor array has the following format:

2 2 2 2 2 2 4 4
flags ovl group frame iSegName iClassName offset cbseg

flags Descriptor flags bit field. See below for details.
ovl Logical overlay number.
group Group index into the descriptor array. The group index must either be

0 or cSegLog <= group < cSeg.

76 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

frame This value has the following different meanings depending upon the
values of fAbs and fSel in the flags bit array and ovl:
fAbs fSel ovl Operation
0 0 0 Frame is added to PSP + 0x10 if not a .com file
0 0 0 Frame is added to PSP if it is a .com file
0 0 != 0 Frame is added to current overlay base
1 0 x Frame is absolute address
0 1 x Frame contains a selector

iSegName Byte index of the segment or group name in the sstSegName table. A
value of 0xffff indicates that there is no name.

iClassName Byte index of the class name in the sstSegName table. A value of
0xffff indicates that there is no name.

offset Byte offset of the logical segment within the specified physical
segment. If fGroup is set in flags, offset is the offset of the group in
the physical segment. Currently all groups define physical segments,
so offset will be zero for groups.

cbSeg Byte count of the logical segment or group.

The descriptor flags bit field flags has the following format:

:3 :1 :2 :1 :1 :4 :1 :1 :1 :1
res fGroup res fAbs fSel res f32Bit fExecut

e
fWrite fRead

res Reserved and set to zero.
fGroup If set, the descriptor represents a group. Because groups are not

assigned logical segment numbers, these entries are placed after the
logcial segment descriptors in the descriptor array.

fAbs frame represents an absolute address.
fSel frame represents a selector.
f32Bit The descriptor describes a 32-bit linear address.
fExecute The segment is executable.
fWrite The segment is writable.
fRead The segment is readable.

(0x012e) sstSegName

The sstSegName table contains all of the logical segment and class names. The table is an array
of zero-terminated strings. Each string is indexed by its beginning from the start of the table.
See sstSegMap above.

(0x012f) sstPreComp

The linker emits one of these sections for every OMF object that has the $$TYPES table flagged
as sstPreComp and for every COFF object that contains a .debug$P section. During packing, the
CVPACK utility processes modules with a types table having the sstPreComp index before
modules with types table having the sstTypes index.

(0x0131) Reserved

Reserved for internal use.
Tool Interface Standards (TIS) Formats Specification for Windows 77

Version 1.0

Microsoft Symbol and Type Information

(0x0132) Reserved

Reserved for internal use.

(0x0133) sstFileIndex

This subsection contains a list of all of the sources files that contribute code to any module
(compiland) in the executable. File names are partially qualified relative to the compilation
directory.

2 2 2 * cMod 2 * cModules 4 * cRef *
cMod cRef ModStart cRefCnt NameRef Names

cMod Count or number of modules in the executable.
cRef Count or total number of file name references.
ModStart Array of indices into the NameOffset table for each module. Each

index is the start of the file name references for each module.
cRefCnt Number of file name references per module.
NameRef Array of offsets into the Names table. For each module, the offset to

first referenced file name is at NameRef[ModStart] and continues for
cRefCnt entries.

Names List of zero-terminated file names. Each file name is partially
qualified relative to the compilation directory.

(0x0134) sstStaticSym

This subsection is structured exactly like the sstGlobalPub and sstGlobalSym subsections. It
contains S_PROCREF for all static functions, as well as S_DATAREF for static module level
data and non-static data that could not be included (due to type conflicts) in the sstGlobalSym
subsection.

78 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

7.5. Hash table and sort table descriptions
The NB09 signature Microsoft symbol and type information contains hash/sort tables in the
sstGlobalSym, sstGlobalPub, and sstStaticSym subsections.

Name hash table (symhash == 10):

The symbol name hash table uses the following checksum algorithm to generate the hash.

 byt_toupper(b) <- (b&0xDF)
 dwrd_toupper(dw) <- (dw&0xDFDFDFDF)

 cb = {Number of characters in the name}
 lpbName= {pointer to the first character of the name}

 ulEnd = 0;
 while (cb & 3) {
 ulEnd |= byt_toupper (lpbName [cb - 1]);
 ulEnd <<= 8;
 cb -= 1;
 }

 cul = cb / 4;

 lpulName = lpbName;
 for (iul = 0; iul < cul; iul++) {
 ulSum ^= dwrd_toupper(lpulName[iul]);
 _lrotl (ulSum, 4);
 }
 ulSum ^= ulEnd;

The hash bucket number is derived from ulSum, by taking the modulo of ulSum with the total
number of hash buckets.

The format of the table is as follows:

2 cHash(n) Number of hash buckets.
2 Alignment Filler to preserve alignment.
4n Hash Table[n] Each ulong entry is a file offset from the beginning of

the chain table to the first chain item for each hash
bucket.

4n Bucket Counts[n] Each ulong entry is the count of items in the chain for
each hash bucket.

8m Chain table[m] Each entry is a pair of dwords. The first dword is the
file offset of the referenced symbol from the
beginning of the symbols. The second dword is the
checksum of the referenced symbol generated by the
above algorithm.

n = the number of hash buckets.
m = the number of symbols (with names) = the number of entries in the chain table.

Tool Interface Standards (TIS) Formats Specification for Windows 79
Version 1.0

Microsoft Symbol and Type Information

Address sort table (addrhash == 12):

The address sort table is a grouping of logical segments (or sections) in which each symbol
reference within the segment/section is sorted by its segment/section relative offset.

The format of the table is as follows:

2 cSeg(n) Number of logical segments/sections.
2 Alignment Filler to preserve alignment.
4n Segment Table[n] Each ulong entry is a file offset from the beginning of

the offset table to the first offset item for each
segment/section.

4n Offset Counts[n] Each ulong entry is the count of items in the offset
table for each segment.

8m Offset Table[m] Each entry is a pair of dwords. The first dword is the
file offset of the referenced symbol from the
beginning of the symbols. The second dword is the
segment/section relative offset of the referenced
symbol in memory.

n = the number of segments/sections.

m = the number of symbols (with addresses) = the number of entries in the offset table.

80 Formats Specification for Windows Tool Interface Standards (TIS)
Version 1.0

Microsoft Symbol and Type Information

Tool Interface Standards (TIS) Formats Specification for Windows 81
Version 1.0

	Tool Interface Standard (TIS) Formats Specification for Windows
	Introduction
	Table of Contents
	Portable Executable (PE) Format
	PE: Introduction
	PE: Contents
	1.0 Overview
	2.0 PE Header
	3.0 Object Table
	4.0 Image Pages
	5.0 Exports
	6.0 Imports
	7.0 Thread Local Storage
	8.0 Resources
	9.0 Fixup Table
	10.0 Debug Information

	Microsoft Symbol and Type Information
	STI: Introduction
	STI: Contents
	1. Symbol and Type Information
	2. Symbols
	3. Types Definition Segment ($$TYPES)
	4. Numeric Leaves
	5. Predefined Primitive Types
	6. Register Enumerations
	7. Symbol and Type Format for Microsoft Executables

