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Just as programmers were starting to get used to the idiosyncrasies and gotchas of memory management under Windows® 3.x, Microsoft rolled out the Win32® API, which presents an entirely different set of challenges. Theoretically, Win32 memory management should be similar under the three incarnations of Win32 (Windows NT™, Windows® 95, and Win32s®). Given Microsoft’s track record in this area, I’d expect that Windows 95 memory management has numerous differences (both subtle and not so subtle) from Windows NT and Win32s. And I’m right—here I’ll describe the implementation of Win32 memory management in Windows 95, looking at issues like the process address space, memory contexts, paging behaviors (for example, Copy on Write), and so forth. To be fair to Microsoft, many of the general concepts described also apply in Windows NT and Win32s.
Page-Based Memory Management
If you want to have any hope of really understanding the memory architecture of Windows 95, there’s simply no way to avoid understanding memory paging on the 386 class of CPUs. Although memory paging long predates the 386, I’m only interested in how Windows 95 uses paging on the 386 and later processors, so I’ll speak in 386-specific terms. If you already know paging cold, you can skip over this section. If memory paging is mysterious to you or if you need a quick refresher, read on.
Paging is a method for the operating system to collaborate with the CPU to fake programs into thinking there’s more memory available than is actually installed in the computer. When a program reads or writes a byte of memory, it may or may not be at the address the program thinks it is. If a program touches an address that doesn’t map directly to a byte of physical RAM, the CPU informs the operating system. The operating system in turn takes the steps necessary to associate physical memory with the address that the program attempted to use.
If the sum total memory usage of all the running programs exceeds the amount of memory installed in the computer, the operating system may need to yank a block of RAM away from some other program that’s using the memory. Blindly stealing memory out from underneath a program is a recipe for disaster, so Windows 95 arranges for the original contents of the RAM to be saved elsewhere before reassigning the block of RAM. The “elsewhere” in this case is the computer’s hard drive. At any given time, all memory in use by the operating system and the running programs is either stored in RAM or on a hard drive. (Actually, this is a bit of simplification, but it will suffice for now.) Virtual memory is the common term for this method of simulating memory using paging and space on a secondary storage device such as a hard drive. One of the fundamental jobs of the Windows 95 Virtual Machine Manager (the VMM module in DOS386.EXE) is to provide virtual memory with a minimum of fuss to application programs.
The confusing aspect of paging is that it affects the CPU’s memory addressing. Without paging, the address that a program tells the CPU to use will be the same address that goes out on the computer’s memory bus. For example, in a real mode program you can easily calculate a physical address from a segment:offset combination by multiplying the segment value by 16 and adding the offset. With paging enabled, a memory address that a program uses may not be the same address that the CPU sends out to the memory bus. Paging introduces a level of indirection (actually two levels) to all addresses. When a program passes an address to the CPU to access, the CPU takes certain bits of the 32-bit address and uses them to look up the real physical RAM address that it should send out to the machine’s bus. The tables that the CPU uses to translate addresses are under the operating system’s control. Putting the address translation tables under the control of the operating system allows the operating system to tell a program to use addresses anywhere within the 4GB range of memory addressable by a 32-bit address, even though there may not be physical RAM at a given address.
If you’re wondering where the term paging comes into play, it’s because the CPU doesn’t provide this indirection for each address on a byte by byte basis. Rather, the translation of memory addresses affects 4KB chunks of memory. For example, if you use paging to assign physical RAM address 0x1000 to program address 0x400000, then RAM address 0x1001 will appear to the program to be at address 0x400001, and RAM address 0x1FFF will be at program address 0x400FFF. However, the next program address (that is, 0x401000) is the start of a new 4KB page, so physical address 0x2000 does not necessarily have to map to program address 0x401000. Program address 0x401000 may be mapped to an entirely different physical RAM address (0x6000, say), or it may not even have any physical RAM mapped to it at all. All of the decisions about which pages will have RAM mapped to them are made by the operating system’s paging code.
Besides allowing the operating system to provide virtual memory, paging also gives it a great deal of flexibility in how it should arrange its various objects in memory. By objects, I mean things such as the operating system code, the program’s code and data areas, memory-mapped files, and so forth. The memory layout that an operating system uses is known as its address space layout. (I’ll describe the Windows 95 address space shortly.) The benefit of paging is that the operating system can spread out operating system objects throughout the entire addressable range of the CPU (in the case of Intel 386 class CPUs, a 4-billion-byte range). 
The entire addressable range of memory that the CPU can theoretically access is known as its address space. Addresses that the CPU will translate because it has enabled paging are called linear addresses. After the CPU translates these linear addresses, actual addresses known as physical addresses will go out on the CPU’s bus to the physical RAM. The important thing to remember is that in most cases, programs and APIs deal with linear addresses, not physical addresses.
With paging support, the operating system can assign various sections of the address space to particular items and leave room for those items to grow or to be added to as necessary. For example, when a program starts up, by default Windows 95 reserves a 1MB range of the CPU’s address space for the program stack. This doesn’t mean that Windows 95 will map 1MB of physical RAM to the stack’s range of memory addresses. Rather, it means that the maximum size of the stack is 1MB. Windows 95 will only map physical memory to those 4KB regions within the stack area that the program actually uses. Paging gives the operating system the capability of reserving vast ranges of memory addresses without actually having to pay for those addresses (with physical RAM) until they’re actually used. It’s like reserving 12 seats for an airline flight without knowing how many of your friends will actually join you. If only three of you fly, you only have to pay for three seats.
At any given time, every 4KB section (page) in the CPU’s 4GB address space is in one of four possible states: available, reserved, committed and present, or committed and not-present.
An available page of memory hasn’t been reserved for use by anybody and is theoretically available to be allocated. An attempt to access this memory by reading or writing to it will result in a page fault exception (exception 14 (0EH)). I’ll describe page faults shortly.
If the page is reserved, it’s part of a range of memory that somebody has requested. However, there is currently no physical RAM mapped to this address, nor is any hard drive space reserved to save a copy of its contents. An attempt to access this memory by reading or writing to it will result in a page fault exception (exception 14 (0EH)). But the operating system gives the owner of the page an opportunity to change the page’s state to committed and present.
If the page is committed and present, this range of addresses has been allocated by someone, and a program is using it to store information. The CPU’s paging mechanism has mapped a 4KB physical block of RAM to this page’s address. Reading or writing to this address will cause the physical RAM mapped to the page to be read or written. There’s a substate to committed and present known as page-locked. A page-locked page is committed, present, and is guaranteed never to be swapped out. There will always be physical RAM associated with a page-locked page until the page is un-page-locked.
The committed and not-present state is similar to the committed and present state. The program has allocated the memory and is using the memory to store information. The difference is that the operating system has decided that the RAM mapped to the page was needed more urgently elsewhere. Therefore, the CPU has copied the contents of this memory to the hard disk and marked the page as not-present. Like the available and reserved states, a page fault will occur if a memory address within the page is accessed. The difference is that when a program accesses this memory, the operating system transparently handles the page fault exception and remaps a 4KB block of physical RAM to the page. Next, the operating system reads in the original contents of the page from the hard disk, and then finally reexecutes the instruction that page-faulted. The result is that the program doesn’t have any idea that a page fault happened. This transparent simulation of RAM using space on a hard drive is the essence of virtual memory.
Windows 95 provides application-level APIs that allow you to allocate ranges of memory pages and to change them to have the attributes that I described above. 
If you’ve programmed for Windows 3.x, you’re probably wondering how paging can be reconciled with selectors. Programs that run in 16-bit protected mode on the Intel® CPUs must use selectors to access a section of memory within the CPU’s address space. Each of a 16-bit program’s code segments is associated with a selector, as are its code segments and any memory blocks it allocates with the global heap functions (such as GlobalAlloc). It’s impossible to do application-level 16-bit programming for Windows without encountering selectors.
The most fundamental information associated with each selector is to where in memory it points (that is, its base address). On a 386, the base address of a selector can be anywhere between 0 and 4GB – 1. In other words, the selector can potentially point anywhere within the CPU’s address range. However, the base address of a selector is specified as a linear address, not a physical address. Therefore, the paging mechanism of the CPU operates underneath the selectors. In both Windows 3.1 and Windows 95, 16-bit code doesn’t think about the paging and virtual memory support. Instead, it just assumes that there will be large regions of memory available to it. The 16-bit global heap management code allocates large pieces of memory from the Ring 0 operating system components and then subdivides the memory into smaller pieces that it makes accessible to programs via selectors. The base addresses of selectors do not have to start on a 4KB page boundary, nor does every page beneath a given memory segment need to be physically present.
As I said earlier, the selector/segment management code doesn’t sweat the details at the paging level. It lets the underlying paging system code provide virtual memory and assumes that when it needs to access memory, it will be there. The 16-bit selector/segment management code in Windows 3.1 hasn’t changed much in Windows 95.
If you’re executing in protected mode, there is no way to avoid selectors. They’re absolutely required to access memory. Luckily, Windows 95 requires at least a 386 CPU. One of the key features of the 386 is that you can make segments that span the entire 4GB of the CPU’s address space. It’s therefore possible to create selectors with base addresses of 0 and limits of 4GB. If you load these selectors into the CS and DS registers, you can effectively forget that segmentation exists. Programs can refer to addresses in memory with just a 32-bit offset value. In this scenario, the 32-bit offset is one and the same as a linear address. The model of using selectors with a 0 base address and a 4GB limit has been dubbed the flat memory model (as opposed to the small, medium, compact, and huge memory models from 16-bit programming). Remember that although flat model programs make it appear that segments no longer exist for Win32-based programs, the CPU is still using segmentation under the hood. This is especially important to remember if you’re going to mix 32-bit code with 16-bit code that can’t hide the ugly reality of segments.
With wide open segments that let a program touch any address within the CPU’s address range, you might be wondering how the operating system protects its internal data structures and other areas of memory that application code shouldn’t be mucking with. In 16-bit programming, it wasn’t hard to do this because a selector defined a specific starting and ending address that a program could touch. Theoretically, the operating system would never hand out a selector with a base address that would allow an application program to get at memory that it shouldn’t have access to. (However, neither Windows 3.1 nor Windows 95 prevent you from creating your own selectors and going to town with them.)
If a Win32-based program uses flat segments, how can the operating system restrict access to areas that it doesn’t want programs to touch? In this case, instead of relying on segment limits, the operating system sets the attributes of the pages as appropriate. For example, a program shouldn’t be able to blindly write to and corrupt its code areas. The operating system therefore sets the page attributes of code areas to be read-only. Programs can read those pages, but any attempt to write to them will cause a page fault. Likewise, a program that gets a trashed pointer will likely write to a page of memory that’s not allocated by anybody. The operating system marks all pages that aren’t specifically owned by somebody as not-present. Trying to touch one of these addresses also results in a page fault. In addition, the operating system can mark a range of pages with the supervisor attribute. Pages with the supervisor attribute can only be accessed by code running at a high privilege level (that is, certain parts of the operating system and VxDs). An attempt to access a supervisor page by a lowly application program results in a page fault. As you can see, even without segments, Windows 95 can use paging to effectively protect sensitive areas of memory. The only downside is that the granularity of memory allocations is 4KB pages, rather than single bytes as with 16-bit segments.
Address Space of a Windows 95 Win32 Process
In Windows 3.1 and earlier, all programs ran within the same address space. That is, any program could easily read the memory of another program. More importantly, a program could modify another program’s memory, a potential ticket to disaster if buggy programs are involved. For example, 16-bit Windows-based programs (even under Windows 95) can get ahold of the selector for the 16-bit USER’s DGROUP selector and write random garbage. Bye-bye windowing system.
Windows 95 runs each process (at least each Win32 process, that is) in its own address space. That means a program can only see memory owned by itself and memory areas that the operating system has deemed to be shared. Private memory in use by other processes is not physically accessible. The Windows 95 memory manager uses paging to ensure that only memory owned by the current process is mapped somewhere into the 4GB address range of the CPU. Physical RAM in use by other processes simply does not show up in the page tables for the current process. The huge benefit of this is that, in theory, a buggy program can only screw up itself and won’t affect other programs. Each program gets its own sandbox to play in, and if it kicks sand, it only hurts itself. Lest you become too excited by this advance in Windows, isolating programs from one another for their mutual protection is nothing new. Operating systems like UNIX have been doing this for decades. Windows NT also keeps each Win32 process in its own address space. (Win32s, the forgotten stepchild in the Win32 family, doesn’t use separate address spaces for each process.)
It is necessary for certain ranges of memory to be shared across all processes. That is, certain pages within the linear address spaces of all processes should map to the same physical page of RAM. Why would you want this? A perfect example is for the system’s DLLs that each process uses. For example, every process at the very minimum requires KERNEL32.DLL. It would be incredibly wasteful for a fresh copy of KERNEL32.DLL to be loaded into memory for every running process. Therefore KERNEL32.DLL, and other system DLLs like USER32, reside in shared memory. When the operating system switches around the CPU’s page tables because it’s about to run a new process, it leaves the page table mapping for the shared memory regions alone. There are other needs for shared memory that I’ll describe later on.
Since Windows 95 keeps the memory for different processes separate from one another, any discussion of how Windows 95 lays out the 4GB address space must necessarily include the concept of memory contexts. A memory context is essentially a list of RAM pages and the linear addresses they will be mapped to when a given process is active. Phrased another way, a memory context is the view of the CPU’s linear address that the operating system gives to a process. Each process has its own memory context. When the Windows 95 scheduler suspends one process and lets another execute, Windows 95 must also switch the memory contexts from the original process to that of the newly scheduled process. Because memory contexts are maintained on a per-process basis, they’re sometimes referred to as process contexts or address contexts. The important thing to remember is that a memory address is meaningless unless you specify which memory context it’s in.
At the topmost level, the memory layout Windows 95 uses for Win32 processes is simple. Within the 4GB address range, Windows 95 reserves the bottom 2GB (addresses 0H – 7FFFFFFFH) for the application’s memory. Addresses above 2GB (addresses 80000000H – FFFFFFFFH) are intended for use by the operating system. Within these two halves of the address space are several subdivisions. Figure 1 shows the various regions within the 4GB address space. If you have the Windows 95 DDK, you might also want to read the section entitled “Page Mapping and Address Spaces” under the “Arenas” header.
�
Figure 1  Windows 95 Address Space
The first 4MB of the address space is shared between all processes in the system virtual machine (VM). Part of this region is the memory below 1MB, which includes the memory image of MS-DOS® that was loaded as part of the Windows 95 bootstrap process. Also of interest below 1MB is the lower portion of the 16-bit global heap. In 16-bit Windows, all heap blocks have a linear address either below 1MB or above 2GB. 16-bit heap allocations with the GMEM_FIXED attribute are allocated from the lowest available address in the global heap, so the allocated block often ends up with a linear address below 1MB. Since many of the 16-bit system DLLs need fixed and page-locked memory (a perfect example being KRNL386), you’ll find the memory for numerous 16-bit system DLLs within this first 4MB range of the address space. This is an important point that I’ll come back to shortly.
The next region in the 4GB address space is the range from 4MB up to 2GB. This is the per-process address space that each Win32 process uses. Each Win32 process has its code, data, and resources mapped into this region. When you switch memory contexts, in effect you apply a different set of page mappings to this range of memory. Unless you specify otherwise, the physical RAM pages that are mapped within this region for use by one process are not accessible by any other processes. Besides the executable’s code and data, this region also contains the code and data for any application-specific DLLs used by the process. Also in this region, you’ll find the application’s heap and stacks for each of its threads. The default load address for Win32-based programs within the per-application area is at the very bottom (4MB). Unless you understand the idea of paging, this idea can be disconcerting. How can more than one program be loaded at the same address in memory? The answer is that they share the same linear address, but not the same physical address. In general, a linear address in one process will not be mapped to the same physical address in RAM. Because of paging, each process can assume that it has the entire 4MB to 2GB range of addresses all to itself. It can’t see the memory of other processes, nor can they see its memory, even though they may be sharing the same linear addresses. The magic of paging keeps them physically distinct.
The exception to the above rule of keeping separate 4MB to 2GB regions for each process is when Windows 95 has determined it’s safe to share the same page of RAM between multiple copies of a program. A prime example is program code since a program usually doesn’t modify its code. If you’re running more than one copy of a program, Windows 95 conserves available RAM by mapping the RAM containing program code into the address space of all the instances of the processes.
Earlier I mentioned that at least some portions of the 16-bit global heap are in memory shared by all processes (be they 16- or 32-bit processes). When you consider this in light of the fact that Win32 processes are isolated from one another, you come to an interesting conclusion: 16-bit Windows 95 processes are more privileged (address-space-wise) than 32-bit processes. A Win32 process can only see its own memory (in the 4MB – 2GB range), and the memory in the regions shared by all processes (0 – 4MB and above 2GB). A 16-bit process on the other hand can always see the memory of all other 16-bit processes, as well as the shared areas of system memory. From an operating system purist point of view, it would be ideal if each 16-bit process were kept in its own address space the way 32-bit processes are. Unfortunately, there are a lot of 16-bit programs out there that rely on the ability to see the memory of other programs. To remain compatible with existing 16-bit code, Windows 95 has to allow 16-bit programs to have greater access to one another than it lets Win32 processes have. Windows NT 3.5 introduced the capability of running each 16-bit process in its own address space, but it consumes more memory and introduces more complexity. The Windows 95 designers apparently felt the benefits weren’t worth the overhead.
Moving now to the upper half of the 4GB address space, Figure 1 shows it subdivided into two regions. The range of memory between 2GB and 3GB is shared across all processes; it’s intended for use by the Ring 3 (user level) operating system code. At the lowest addresses within this range you’ll find the remainder of the 16-bit global heap. Above the global heap, you’ll find memory-mapped files. This bears a further look. If memory-mapped files are in a range of memory shared by all processes, it would appear that any process can see the memory-mapped file, even if that process hasn’t explicitly mapped a view for it. That assumption is indeed correct. In Windows 95, the act of using a memory-mapped file makes that file accessible to all processes. In this aspect, Windows 95 differs from Windows NT. Windows NT uses a much more sophisticated paging model, thereby causing memory-mapped files to be visible only in the memory context of processes that open up a view into the memory-mapped file.
The uppermost portion of the 2GB – 3GB range is where you’ll find the 32-bit system DLLs (KERNEL32, USER32, and so on). To free up as much space as possible for memory-mapped files, Windows 95 adds DLLs to the system from the 3GB line downwards in memory. The results of the .wm command in SoftIce/W show this very clearly:
  
:.wm
IMTE 0 8164EFBC  9 BFF70000 C:\CHICAGO\SYSTEM\KERNEL32.DLL
IMTE 1 8154FE84  6 BFF20000 C:\CHICAGO\SYSTEM\GDI32.DLL
IMTE 2 815501B8  6 BFED0000 C:\CHICAGO\SYSTEM\ADVAPI32.DLL
IMTE 3 8155051C  6 BFC00000 C:\CHICAGO\SYSTEM\USER32.DLL
  
The number in the fifth column is the load address of the module. KERNEL32.DLL is the first 32-bit system DLL to load, and it loads as close to 3GB as possible (address BFF70000H) while keeping all of its contents within the 2GB – 3GB range. Below it in memory is GDI32.DLL at address BFF20000H, which butts up as close as possible to KERNEL32.DLL. While it might seem like these load addresses are calculated as the DLLs load, they’re not. Microsoft has a program that determines how much address space each DLL will take, and then figures out the load address that will cause the system DLLs to be packed together as closely as possible. Another program then modifies the DLLs so that they have the preferred load address just calculated. The effect is that these system DLLs load as fast as possible and don’t need to have any relocations applied by the Windows 95 loader.
The final portion of the Windows 95 address space is the range from 3GB to 4GB (C0000000H – FFFFFFFFH). This final gigabyte is the domain of the Ring 0 system components of Windows 95 (that is, the VxDs). This can be seen by looking at the (believe it or not) abbreviated output from the SoftIce/W VxD command shown in Figure 2.
Figure 2  Ring 0 System Components (VxDs) Stored from 3GB to 4GB
  
:vxd
VxD Name  Address   Length    Code  Data  Type    ID    DDB
VMM       C0001000  000106DC  0028  0030  0001    0001  C000F2CC
WINICE    C0019C54  00049940  0028  0030  0001    0202  C003F440
CONFIGMG  C0063594  000003D8  0028  0030  0001    0033  C006390C
VSHARE    C006396C  00001864  0028  0030  0001    0483  C0063D4C
VWIN32    C00651D0  00001214  0028  0030  0001    002A  C00661F4
VFBACKUP  C00663E4  000004AC  0028  0030  0001    0036  C0066804
VCOMM     C0066890  00000418  0028  0030  0001    002B  C0066B68
COMBUFF   C0066CA8  0000025C  0028  0030  0001    0000  C0066E44
IFSMgr    C0066F04  000052B0  0028  0030  0001    0040  C006A164
IOS       C006C1B4  000020B8  0028  0030  0001    0010  C006DF10
SPOOLER   C006E26C  00000200  0028  0030  0001    002C  C006E34C
VFAT      C006E46C  0000907C  0028  0030  0001    0486  C00773DC
VCACHE    C00774E8  0000099C  0028  0030  0001    048B  C0077CB4
VCOND     C0077E84  000000A0  0028  0030  0001    0038  C0077EC8
VCDFSD    C0077F24  0000019C  0028  0030  0001    0041  C0077F90
VXDLDR    C00780C0  000000F0  0028  0030  0001    0027  C007814C
VDEF      C007832C  000004D0  0028  0030  0001    0000  C00787AC
VPICD     C00787FC  000022B8  0028  0030  0001    0003  C007A214
VTD       C007B2E8  00000420  0028  0030  0001    0005  C007B644
REBOOT    C007BAF0  000002A8  0028  0030  0001    0009  C007BD14
VDMAD     C007BD98  00001F2C  0028  0030  0001    0004  C007DA24
VSD       C007DCC4  00000220  0028  0030  0001    000B  C007DE84
V86MMGR   C007DEE4  00001308  0028  0030  0001    0006  C007F064
PAGESWAP  C007F1EC  000000E4  0028  0030  0001    0007  C007F278
DOSMGR    C007F2D0  00000338  0028  0030  0001    0015  C007F490
VMPOLL    C0080C8C  00000178  0028  0030  0001    0018  C0080D98
SHELL     C0080F58  00000C04  0028  0030  0001    0017  C00818E8
PARITY    C0081CE4  00000118  0028  0030  0001    0008  C0081DA4
BIOSXLAT  C0081DFC  0000009C  0028  0030  0001    0013  C0081E44
VMCPD     C0081E98  00000408  0028  0030  0001    0011  C0082238
VTDAPI    C00822A0  0000025C  0028  0030  0001    0442  C0082498
PERF      C008276C  00000140  0028  0030  0001    0048  C0082850
VCD       C0082CB0  00000430  0028  0030  0001    000E  C0083018
PAGEFILE  C00830E0  000000F0  0028  0030  0001    0021  C0083178
VMOUSE    C00831D0  00000834  0028  0030  0001    000C  C00837A0
VKD       C0083A04  00002460  0028  0030  0001    000D  C0085B88
VPD       C0085E64  00000A38  0028  0030  0001    000F  C00866D8
VDD       C008689C  00000DB8  0028  0030  0001    000A  C0086CA4
VFLATD    C0087654  00000260  0028  0030  0001    011F  C0087840
INT13     C00878B4  00000924  0028  0030  0001    0020  C0088094
------------------ Dynamically Loaded VxDs -------------------
LPTENUM   C0FE56CC  0000076C  0028  0030  LCODE   0000  C0FE5DCC
SERENUM   C0FD4900  0000007C  0028  0030  LCODE   0000  C0FD4928
ESDI_506  C0FEC618  00001238  0028  0030  LCODE   008D  C0FED7D4
HSFLOP    C0FEBE54  000007C0  0028  0030  LCODE   0000  C0FEC5C4
voltrack  C0FE90F4  000005A0  0028  0030  LCODE   0090  C0FE960C
DiskTSD   C0FD5568  0000027C  0028  0030  LCODE   0000  C0FD578C
VJOYD     C0FD4A84  00000068  0028  0030  LCODE   0000  C0FD4A9C
SB16      C0FD5B68  0000E340  0028  0030  LCODE   32A5  C0FD65DC
MMDEVLDR  C0FD4F04  0000007C  0028  0030  LCODE   044A  C0FD4F30
ATI       C0FD4D50  00000100  0028  0030  LCODE   0000  C0FD4DD0
ISAPNP    C0FD50D4  000000A0  0028  0030  LCODE   003C  C0FD5124
  
The full output from the SoftIce/W VxD command ran over 240 lines (and yes, this was with the non-debug version of Windows 95). On a whim, I totaled up the sizes of all the blocks to see roughly how much memory is consumed by the VxD components. After subtracting the memory consumed by SoftIce/W, the VxD components took up over 860KB. Of course, some of this memory most likely was pageable, but the fact remains there’s a good chunk of operating system code hidden up at Ring 0, out of reach of most programmers.
Sharing Memory
In 16-bit Windows, the memory of all programs and DLLs is accessible to all other programs and DLLs: 16-bit Windows uses the same local descriptor table for all processes. As a result, it’s very easy to share memory between multiple processes. All that’s necessary is to arrange for two or more programs to get ahold of the same selector. Despite Microsoft’s dire warnings, using the GMEM_SHARE attribute when allocating memory isn’t a requirement in 16-bit Windows.
Now contrast this to Win32 memory management in Windows 95, which keeps all the memory of a Win32 process separate from other processes unless you specifically takes steps to share the memory. Unfortunately, these steps aren’t as simple as specifying GMEM_SHARE. Specifying GMEM_SHARE to GlobalAlloc won’t buy you memory that’s shared across multiple memory contexts. (GMEM_SHARE has no effect on memory sharing in 16-bit Windows or in Win32. In the 16-bit case, it isn’t necessary because everything is shared, and in the 32-bit case, it’s ignored.)
You may have heard some Win32 pundits say that the only way to share memory in Windows 95 (or Windows NT for that matter) is with memory-mapped files. While you can share memory with memory-mapped files, they’re certainly not the whole story, nor are they the only solution. In fact, if all you want is to share a small amount of data between a couple instances of the same program, they’re overkill. Here I’ll focus on sharing readable/writeable data between applications. Don’t forget that the entire upper half of the 4GB address space is reserved for system use and is always visible and shared between all processes.
At the lowest level, sharing memory between memory contexts is nothing more than including pages of RAM in the page table mappings of more than one process. The shared memory pages can map to the same linear address in each process, or they might map to different linear addresses.
In Windows 95, memory shared via memory-mapped files is always at the same linear address in each process. My sample PHYS program, which I’ll examine later, shows that this is the case. But it’s dangerous to make this assumption in your code. For one thing, Windows NT doesn’t guarantee that memory-mapped files will be at the same address in each context. Since sharing via memory-mapped files is covered in numerous programming texts, I won’t dwell on it here.
For some reason, the easiest way to share memory in Win32-based programs is not talked about much. Specifically, giving the SHARED attribute to your program’s data sections when you link lets you easily share memory between multiple copies of an EXE or between multiple users of a DLL. Giving the SHARED attribute to a DLL’s data section makes it functionally the same as the data segment in a 16-bit DLL. Luckily, Windows 95 gives you the flexibility to share some of your data, while still having other data that’s per-process. You can create multiple data sections in your EXE or DLL. Put all the data you want to share in one section and give that section the SHARED attribute. The remainder of your data goes into another section which you leave with the default attributes (nonshared). The PHYS program does exactly what I’ve described here to show the difference between shared and nonshared memory.
Normally, the Microsoft compiler puts all your initialized data into a section of the executable called .data and leaves the IMAGE_SCN_MEM_SHARED attribute out of the section’s attributes. This causes a new copy of that data to be created for each process that uses the data. To share memory, you’ll tell the compiler to create a new section. This section can have any name you want (although only the first eight characters will be used in the EXE’s section table). For instance:
  
#pragma data_seg("SHAREDAT")
  
After the #pragma, declare any variables you want to be shared. The variables should be initialized, since if they’re not, the compiler puts them into the uninitialized data section. You probably weren’t intending to make your uninitialized data shared, so just initialize them and bypass some of the hair pulling I went through. After declaring the variables, if you want to go back to putting data into the default data section, throw in a
  
#pragma data_seg()
  
at the end of your shared variable declarations.
Once you’ve declared all the data you want to be shared, the final step is to convey your desires to the linker. This can be done in one of two ways. The traditional way is to put that section and its attributes into the DEF file.
  
SECTIONS
    SHAREDAT READ WRITE SHARED
  
Another way to do the same thing is to specify the attributes on the linker command line:
  
LINK /SECTION:SHAREDAT,RWS <other linker options and files>
  
Above, the “RWS” is interpreted as “read, write, and shared.”
There is a buyer beware warning that needs to be mentioned about sharing your DLL’s data sections. If you initialize your data with the address of another code or data symbol, you’re in for an interesting time if the DLL loads at different linear addresses in two or more processes. For example, consider this seemingly innocent data declaration in a shared data section:
  
int i;
int * AddressOf_i = &i;
  
The problem is that the AddressOf_i can’t be known until the DLL loads. Therefore, the DLL contains a fixup record telling the loader to patch in the correct value into the AddressOf_i variable. The first time the DLL loads, there’s no problem. Now, consider what happens if another process loads the DLL, but the DLL can’t load at the same linear address in the second process. Since the AddressOf_i variable is already in use by the first process (it’s shared, remember?), the loader can’t patch in the correct value for the second process. This is now a recipe for disaster. The value of AddressOf_i is completely wrong in the second process. When I encountered this particular problem in my own code, I was able to work around it using pointers. In my per-process data variables, I included a pointer to the shared memory area. Because the pointer was in the per-process area, the loader always fixed up the pointer value to be correct for the current process.
Beyond explicitly sharing your data, Windows 95 shares other regions of memory under the hood. I’ve already mentioned that all the memory above a linear address of 2GB is shared between processes. However, Windows 95 also silently shares certain ranges of memory below 2GB. If you run multiple copies of an EXE, or use a DLL in more than one process, it would be wasteful to load all the code sections for each user of the code. Although code sections don’t have the IMAGE_SCN_MEM_SHARED attribute, Windows 95 only loads one copy of the code and uses the CPU’s page table to map the code into the memory contexts of all users of the code.
The exception to the case where Windows 95 shares code sections between multiple processes occurs when a DLL cannot load at the same base address in each process. Say FOO.DLL is used by two different processes. When process A loads the DLL, the DLL is brought into memory at some linear address X. Now, process B may use a different group of DLLs (but including FOO.DLL). When process B loads, some other DLL may be assigned the linear address X before the loader gets around to loading FOO.DLL. Since address X isn’t available in process B’s memory context, FOO.DLL will have to be loaded elsewhere. If you have control over the programs that run into a situation like this, you can usually solve it by rebasing the DLL to a base address that’s not used in either process.
Copy on Write in Windows 95 (Or Lack Thereof)
Knowing that Windows 95 shares code across processes (where possible), how do debuggers handle this? Why is this an issue? Debuggers set breakpoints by writing breakpoint instructions (INT 3H, opcode 0xCC) into the code. If a debugger writes a breakpoint into a code page shared by two processes, there’s a potential problem. The debugger is only debugging one of the processes and won’t see the breakpoint interrupt if another process hits the breakpoint instruction. When the operating system sees the INT 3H in the other process and determines that the process isn’t being debugged, it terminates the process. The reason is that there was an unhandled exception. If the memory management code in Windows 95 worked the way I described above, you wouldn’t be able to debug through DLLs used by more than one process at the same time. (At least not without causing all the other processes to terminate abruptly.) Nor would you be able to debug one copy of a program while another copy runs.
Operating systems like Windows NT and UNIX handle this problem with a mechanism called copy on write. In a system with copy on write, the memory manager uses the CPU’s paging to share memory wherever possible and only duplicate a page of memory in RAM when absolutely necessary. An example makes this much clearer: two copies of a program are executing and sharing the same code pages (which have the read-only attribute). One of the processes is being debugged, and the user tells the debugger to set a breakpoint somewhere in the code. When the debugger attempts to write out the breakpoint instruction, it triggers a page fault (the page is read-only). When the operating system sees the page fault, it first determines that it’s a debugger that’s trying to read the memory, and that it’s a legitimate request. However, the operating system doesn’t just let the write go through to the shared code page. Instead, the system makes a copy of the affected page and changes the page table of the debuggee to use the copy of the original page. Once the page has been copied and mapped in, the system lets the write go through. The write operation only affects the copied page, leaving the original page alone.
Copy on write isn’t limited to shared code. In Windows NT, writeable data pages start out with the read-only attribute. When the program writes to one of these pages, the CPU generates a page fault. The operating system handler then marks those pages as read/write. Why go through this trouble? When a second copy of the EXE or DLL loads up, the memory manager can share all the data pages that still have the read-only attribute. If these shared pages are then written to, the copy on write mechanism kicks in and provides separate RAM pages to each process wherever necessary. The benefit of copy on write is that memory is shared as efficiently as possible. The system only makes a new copy of a shared page when absolutely necessary. 
Unfortunately, Windows 95 doesn’t directly support copy on write through paging. This has caused problems for many early adopters of Windows 95. After all, Microsoft is pushing for all Win32-based programs to run on Windows NT as well as Windows 95. It’s harder to do so when architectural features like copy on write are missing from Windows 95.
In defense of Windows 95, it isn’t blindly stupid about the problem of writing to shared memory. Since something had to be done to make debuggers usable, Windows 95 supports a pseudo copy on write scheme. In this scheme, the WriteProcessMemory function takes the place of a page fault on a shared page. Way down inside WriteProcessMemory, the operating system determines if an address range you’re attempting to write to lies in shared memory. If so, the system copies the original page(s) to a new set, maps the new page(s) to the same linear address in the current process, and then does the write operation. The PHYS program demonstrates this pseudo copy on write.
While the WriteProcessMemory function is sufficient to allow debuggers to debug through most DLLs, it unfortunately doesn’t work on the shared region above 2GB. Since the system DLLs like KERNEL32 lie above 2GB in Windows 95, regular application debuggers can’t step through the system DLLs as they can in Windows NT. Go ahead and try it. Fire up your favorite application debugger under Windows 95 and try to step into an operating system call. Both the Visual C++™ debugger and Turbo Debugger silently step over these calls even if you’re in the disassembly pane and tell them to step into the call. If you want to step through the system code in Windows 95, you’ll need a debugger that doesn’t rely on WriteProcessMemory. This means a system-level debugger like SoftIce/W or WDEB386.
PHYS
To demonstrate all the Windows 95 memory management details I’ve discussed, I wrote the PHYS program (see Figure 3). PHYS doesn’t have a fancy user interface, but it’s very effective in showing the layout of memory, shared memory, and the Windows 95 pseudo copy on write support. (Complete source code can be found on any MSJ bulletin board.) PHYS is simple: it finds and displays the linear addresses of various items in memory (a code section, a memory-mapped file, and so on). When just one copy of PHYS is run, it’s a crude but useful demonstration of the Windows 95 process memory layout. The program’s functionality doesn’t stop there, however. Besides showing the linear addresses of memory objects, it also shows the physical RAM address mapped to the linear address as well as the page’s protection attributes. By running two or more copies of PHYS, you can see for yourself which memory regions are shared by multiple processes. In addition, PHYS shows writes to a code page in memory and shows the before and after addresses, proving that WriteProcessMemory effectively performs a copy on write.
�
Figure 3  PHYS
PHYS’s main workhorse routine is shown in Figure 4. ShowPhysicalPages calculates the linear and physical addresses of various memory objects and prints them out, one to a line. However, PHYS makes no attempt to show every memory object in its address space. Rather, it displays selected items that I consider important to showing the memory layout of a process.
Figure 4  ShowPhysicalPages
  
void ShowPhysicalPages(void)
{
DWORD linearAddr;
MEMORY_BASIC_INFORMATION mbi;

//
// Get the address of a 16 bit DLL that's below 1MB (KRNL386's DGROUP)
//
linearAddr = Get_KRNL386_DGROUP_LinearAddress();
printf( "KRNL386 DGROUP      - Linear:%08X  Physical:%08X  %s\n",
        linearAddr,
        GetPhysicalAddrFromLinear(linearAddr),
        GetPageAttributesAsString(linearAddr) );

//
// Get the starting address of the code area.  We'll pass VirtualQuery
// the address of a routine within the code area.
//
VirtualQuery( ShowPhysicalPages, &mbi, sizeof(mbi) );
linearAddr = (DWORD)mbi.BaseAddress;
printf( "First code page     - Linear:%08X  Physical:%08X  %s\n",
        linearAddr,
        GetPhysicalAddrFromLinear(linearAddr),
        GetPageAttributesAsString(linearAddr) );

//
// Get the starting address of the data area.  We'll pass VirtualQuery
// the address of a global variable within the data area.
//
VirtualQuery( &callgate1, &mbi, sizeof(mbi) );
linearAddr = (DWORD)mbi.BaseAddress;
printf( "First data page     - Linear:%08X  Physical:%08X  %s\n",
        linearAddr,
        GetPhysicalAddrFromLinear(linearAddr),
        GetPageAttributesAsString(linearAddr) );

//
// Get the address of a data section with the SHARED attribute
//
MySharedSectionVariable = 1;    // Touch it to force it present
linearAddr = (DWORD)&MySharedSectionVariable;
printf( "Shared section      - Linear:%08X  Physical:%08X  %s\n",
        linearAddr,
        GetPhysicalAddrFromLinear(linearAddr),
        GetPageAttributesAsString(linearAddr) );

//
// Get the address of a resource within the module
//
linearAddr = (DWORD)
        FindResource(GetModuleHandle(0), MAKEINTATOM(1), RT_STRING);
printf( "Resources           - Linear:%08X  Physical:%08X  %s\n",
        linearAddr,
        GetPhysicalAddrFromLinear(linearAddr),
        GetPageAttributesAsString(linearAddr) );

//
// Get the starting address of the process heap area.
//
linearAddr = (DWORD)GetProcessHeap();
printf( "Process Heap        - Linear:%08X  Physical:%08X  %s\n",
        linearAddr,
        GetPhysicalAddrFromLinear(linearAddr),
        GetPageAttributesAsString(linearAddr) );

//
// Get the starting address of the process environment area.
//
VirtualQuery( GetEnvironmentStrings(), &mbi, sizeof(mbi) );
linearAddr = (DWORD)mbi.BaseAddress;
printf( "Environment area    - Linear:%08X  Physical:%08X  %s\n",
        linearAddr,
        GetPhysicalAddrFromLinear(linearAddr),
        GetPageAttributesAsString(linearAddr) );

//
// Get the starting address of the stack area.  We'll pass
// the address of a stack variable to VirtualQuery
//
VirtualQuery( &linearAddr, &mbi, sizeof(mbi) );
linearAddr = (DWORD)mbi.BaseAddress;
printf( "Current Stack page  - Linear:%08X  Physical:%08X  %s\n",
        linearAddr,
        GetPhysicalAddrFromLinear(linearAddr),
        GetPageAttributesAsString(linearAddr) );

//
// Show the address of a memory mapped file
//
linearAddr = (DWORD)PMemMapFileRegion;
printf( "Memory Mapped file  - Linear:%08X  Physical:%08X  %s\n",
        linearAddr,
        GetPhysicalAddrFromLinear(linearAddr),
        GetPageAttributesAsString(linearAddr) );

//
// Show the address of a routine in KERNEL32.DLL
//
linearAddr = (DWORD)
    GetProcAddress( GetModuleHandle("KERNEL32.DLL"), "VirtualQuery" );
printf( "KERNEL32.DLL        - Linear:%08X  Physical:%08X  %s\n",
        linearAddr,
        GetPhysicalAddrFromLinear(linearAddr),
        GetPageAttributesAsString(linearAddr) );
}
  
The shared memory objects that PHYS shows are a memory-mapped file and a routine in a 32-bit DLL. In addition, the routine also displays the address of PHYS.EXE’s heap and its code, data, shared data, resource, and stack regions. The addresses of a memory-mapped file and a routine in KERNEL32 show that they’re in the shared Ring 3 region between 2GB and 3GB.
Figure 5 shows the output from running two copies of PHYS. For PHYS to show memory sharing between processes, it’s very important to do things in the right sequence to make the results meaningful. The sequence was as follows: run the first instance of PHYS. When it’s paused at the “Press any key...” prompt, start the second copy of PHYS. This guarantees that the second instance will be running at the same time as the first instance. Finally, switch back to the first instance and press a key to get the second half of the first instance’s output.
Figure 5  Running Two Instances of PHYS
First Instance Output
  
***** FIRST INSTANCE *****
KRNL386 DGROUP      - Linear:00036F60  Physical:00245F60  Read/Write USER
First code page     - Linear:00401000  Physical:00BBE000  ReadOnly USER
First data page     - Linear:00408000  Physical:006E2000  Read/Write USER
Shared section      - Linear:0040B000  Physical:0041D000  Read/Write USER
Resources           - Linear:0040D088  Physical:00B3F088  ReadOnly USER
Process Heap        - Linear:00410000  Physical:0082A000  Read/Write USER
Environment area    - Linear:00520000  Physical:00A2E000  Read/Write USER
Current Stack page  - Linear:0063F000  Physical:00ADD000  Read/Write USER
Memory Mapped file  - Linear:8233A000  Physical:0099D000  Read/Write USER
KERNEL32.DLL        - Linear:BFFAF09C  Physical:004F609C  ReadOnly USER
Press any key...

Now modifying the code page
KRNL386 DGROUP      - Linear:00036F60  Physical:00245F60  Read/Write USER
First code page     - Linear:00401000  Physical:00CA1000  Read/Write USER
First data page     - Linear:00408000  Physical:006E2000  Read/Write USER
Shared section      - Linear:0040B000  Physical:0041D000  Read/Write USER
Resources           - Linear:0040D088  Physical:00805088  ReadOnly USER
Process Heap        - Linear:00410000  Physical:0082A000  Read/Write USER
Environment area    - Linear:00520000  Physical:00A2E000  Read/Write USER
Current Stack page  - Linear:0063F000  Physical:00ADD000  Read/Write USER
Memory Mapped file  - Linear:8233A000  Physical:0099D000  Read/Write USER
KERNEL32.DLL        - Linear:BFFAF09C  Physical:004F609C  ReadOnly USER
  
Second Instance Output
  
***** SECONDARY INSTANCE *****
KRNL386 DGROUP      - Linear:00036F60  Physical:00245F60  Read/Write USER
First code page     - Linear:00401000  Physical:00BBE000  ReadOnly USER
First data page     - Linear:00408000  Physical:002FF000  Read/Write USER
Shared section      - Linear:0040B000  Physical:0041D000  Read/Write USER
Resources           - Linear:0040D088  Physical:00B3F088  ReadOnly USER
Process Heap        - Linear:00410000  Physical:00704000  Read/Write USER
Environment area    - Linear:00520000  Physical:00809000  Read/Write USER
Current Stack page  - Linear:0063F000  Physical:00B95000  Read/Write USER
Memory Mapped file  - Linear:8233A000  Physical:0099D000  Read/Write USER
KERNEL32.DLL        - Linear:BFFAF09C  Physical:004F609C  ReadOnly USER
Press any key...
  
For now, let’s concentrate on just the first set of addresses shown for the first instance. The addresses are sorted in order of their linear addresses. Before you do anything else, examine the correlation between physical and linear addresses. Can’t find a correspondence? Don’t try too hard. There isn’t one. Windows 95 keeps a pool of available RAM pages and doesn’t try to match physical RAM pages to any particular linear address.
The first four items shown are memory sections within the PHYS.EXE executable. Earlier, I mentioned that in Windows 95, the default load address for a Windows 95 process is 4MB (0x400000). If you dump out PHYS.EXE’s header with DUMPBIN, you’ll find that the code section starts at a relative virtual address (RVA) of 0x1000. Adding 0x1000 to 4MB yields 0x401000, exactly the address shown in PHYS’s output. You can go a step further and obtain the RVAs of the data section, the shared data section, and the resource section and verify that adding their RVAs to 4MB gives the same linear address shown in PHYS’s information.
The next item in PHYS’s sorted output is the default process heap. At address 0x410000, it’s not too far past the last linear address used by the code and data sections in the PHYS.EXE module. It looks like KERNEL32 allocates linear memory in a bottom-up fashion. The default size for the initial process heap in Windows 95 is 1MB+4KB. This would make the next available linear address in the address space appear to be somewhere around 0x511000. However, Windows 95 starts each new virtual memory allocation at a 64KB boundary, so the next available region would be at address 0x520000. Surprise, surprise, that happens to be the exact address at which the processes’ environment area starts. It looks like the bottom-up allocation theory is still holding up.
Most environments don’t have 64KB of strings in them, but a rule’s a rule, so the next available address region should be 64KB after the start of the environment (that is, at 0x530000). Looking at the PHYS output, you see the program’s current stack page starts at 0x63F000. At first glance, this would appear to shoot a hole in my bottom-up theory for address space allocation. However, a bit more consideration shows that a bottom-up allocation scheme could still be at work here. Remember, a stack grows from higher address to lower, so you have to subtract the length of the stack area from the top of the stack to get the starting address of the stack region. If the current program stack page is at 0x63F000, and if you haven’t used too much stack space, the end of the stack region should be at 0x640000. The default program stack size for PHYS.EXE is 1MB, so subtracting 1MB from 0x640000 gives 0x540000. This is 64KB higher than the 0x530000 my bottom-up allocation theory would suggest. I can’t explain this away. However, if I were to call VirtualQuery for an address within the stack, the AllocationBase value returned by VirtualQuery would be 0x530000. It appears that when the loader calculates the size needed for the program stack, it’s rounding up by 64KB, and so a range of size 1MB+64KB is allocated, rather than just 1MB. From what I can tell, the bottom-up allocation theory still appears to hold.
After items directly related to program data areas, the next item that PHYS shows is a memory-mapped file that it creates. The base address of this memory-mapped file at offset 0x8233A000 is well over 32MB into the shared Ring 3 region between 2GB and 3GB. Since the 2 – 3GB region is mapped by all processes, this means that any program can view (and potentially trash) any memory-mapped files. Yes, even memory-mapped files that the process hasn’t created a view of. This is a potential source of bad pointer overwrites in Windows 95. Windows NT has a more sophisticated memory manager and doesn’t allow this breach of address space privacy.
The remaining item in PHYS’s output is the address of the VirtualQuery routine in KERNEL32.DLL. The address (0xBFFAF09C) is pretty close to the end of the shared 2 – 3GB region. Why so high an address? Windows 95 sets the base address of the system DLLs so that they’ll be as high and as close together as possible. The goal is to keep as much free space as possible in the 2 – 3GB region for use by memory-mapped files. You can see this yourself by examining the base address of some system DLLs like KERNEL32.DLL, USER32.DLL, GDI32.DLL, and so forth.
Examining Shared Memory with PHYS
 To see what regions of memory Windows 95 shares between processes, you can run two copies of PHYS and compare their output. That’s why Figure 5 has the output from two instances of PHYS. Let’s compare the first set of addresses from the first instance of PHYS to the address given by the second instance. In the two sets of addresses, memory blocks that have the same physical address are shared between the two instances. To make things easier, I’ve broken the items into the shared and unshared lists below.

In Shared Memory�First code page�Shared section�Resources�Memory-mapped file�KERNEL32.DLL
In Nonshared Memory�First data page�Process heap�Environment area�Current stack page
The “shared” list shouldn’t be too surprising. KERNEL32.DLL is one of the system DLLs, which you would certainly hope to be shared. PHYS.EXE’s code and resources are shared, meaning that Windows 95 is trying to be efficient about using memory. The two remaining shared items (the shared section and the memory-mapped file) are the two items that PHYS explicitly created to share memory with other instances. The items in the nonshared list aren’t too surprising either. All of the items are read/write program data. If Windows 95 were to try and share these memory regions, running multiple instances of PHYS would quickly cause a crash.
The final demonstration in PHYS is the pseudo copy on write provided by WriteProcesMemory. Look at the three lines for the first code page (condensed below): 
  
***** FIRST INSTANCE *****
First code page     - Linear:00401000  Physical:00BBE000  ReadOnly USER
.
.
.
Now modifying the code page
First code page     - Linear:00401000  Physical:00CA1000  Read/Write USER

***** SECONDARY INSTANCE *****
First code page     - Linear:00401000  Physical:00BBE000  ReadOnly USER
.
.
.
  
To make sense of the output, it’s vital to remember the sequence of events while the two copies of PHYS ran. The first and third address lines are from two different processes and happened before the code page was written to. The physical address of the code page in both processes is 0x00BBE000, proving that the page is shared between the two instances. The middle address line was output after the first instance wrote to the code page with WriteProcessMemory. Notice how it now has a completely different physical address? This shows that WriteProcessMemory changed the underlying physical RAM page to a different page of memory. Although it’s not shown here, the physical address of the first code page remains at 0x00BBE000 in the second instance.
Memory Contexts (Advanced Stuff)
While it’s fine to talk abstractly about memory contexts, at some point the rubber must meet the road. Windows 95 needs to maintain actual data structures to keep track of which pages of RAM should be mapped to linear addresses in a given process. To understand memory contexts in Windows 95, you need to understand the CPU’s paging mechanism at a low level. Here I’ll give a warp speed overview of 386 paging that omits some of the more advanced details. If you’re interested in a precise description of paging, don’t hesitate to refer to the Intel manuals or other books on the 386 architecture.
The 386 class of CPUs uses two levels of lookup tables to translate a linear address to a physical address that goes out on the address bus. The first lookup table is known as the page directory and is 4KB in size. It can be viewed as an array of 1024 DWORDs. Each DWORD in the page directory array contains the physical address of another 4KB block known as a page table. Like the page directory, the page table is an array of 1024 DWORDs. Each DWORD in the page table array contains the physical address of a 4KB block of memory.
To use the page directory and page tables, the CPU breaks up a 32-bit linear address into the three components shown in Figure 6. The CPU uses the top 10 bits of the address as an index into the page directory. The next lower 10 bits of the address are an index into a 4KB page table. Which page table do these bits index? None other than the page table pointed at by the page directory that the CPU found in the previous step. The address in the page table is a physical address that’s aligned on a 4KB boundary. The final part of the calculation is to take the bottom 12 bits of the linear address and use them as an offset into the memory pointed at by the page table. In simpler terms, the top 10 bits of the address index into an array that contains 1024 pointers to other arrays. The second 10 bits of the address index this secondary array to get a physical address. The low 12 bits of the linear address are added to this physical address to get the final physical address.

Figure 6  Using the Page Directory and Page Tables
A natural question at this point is how the CPU knows where to find the page directory. The page directory is pointed at by the CR3 register, one of the special registers introduced on the 386. The fastest way to change between memory contexts �would be to simply create a page directory and 1024 associated page tables for each process, changing the CR3 register to point at the desired page directory as needed. The problem with this approach is that 1024 page tables, each 4KB in size, would take up 4MB of memory, obviously not an effective use of RAM. Therefore, to change memory contexts, Windows 95 sets up a single 4MB region of memory and modifies the entries within the page directory to change the page mappings quickly. If you’re concerned that 4MB sounds like a lot of memory just to use for paging, don’t be. At the page directory level, the operating system can tell the CPU that an entire 4KB page table isn’t present in memory, thereby eliminating the need to map a 4KB block of physical memory to the page table. Windows 95 doesn’t use anywhere near 4MB of memory to manage paging.
The Windows 95 page directory and page tables are mapped into a 4MB region near the end of the 32-bit address space. You can easily find the linear address of the page directory by dumping out the CR3 register with the SoftIce/W CR command. On my machine, CR3 contains 6EE000H. The CR3 register contains a physical address, so you’ll need to find the associated linear address if you want to view it. The SoftIce/W PHYS command is handy for this purpose. The PHYS command searches the page tables to find all linear addresses that correspond to a given physical address. The command “PHYS 6EE000” yields two linear addresses. The second of these addresses is FFBFE000H, which is within a 4MB range of memory reserved for page tables.
Given that you can find the page directory in SoftIce/W, you should be able to prove or disprove what I said about context switching by setting a hardware write breakpoint within the page directory. If the breakpoint doesn’t go off, then context switching is probably done some other way. If it does go off, it’s a strong indicator that context switching is done by manipulating the page tables. Also, where the write is happening should give us a clue about what’s responsible for switching contexts. Running this simple experiment in SoftIce/W in fact confirms that the page directory is being written to on a regular basis. If you back up a few instructions from where the write occurs, you’ll find that you’re in the VMM _ContextSwitch routine. Well, whaddaya know.
If you’re wondering how I knew the code was in the _ContextSwitch routine, it was helpfully given to me by SoftIce/W. It turns out that the _ContextSwitch routine is one of the VMM services in the VMM VxD. Its address appears in the table of VMM services that are pointed to by a field in VMM’s device descriptor block. So where did SoftIce/W come up with this name? See the VMM.INC file from the Windows 95 DDK. Each line that starts with VMM_Service is a service routine provided by the VMM VxD. Near the end of the list you’ll find the routine _ContextSwitch. Also of interest in the vicinity of _ContextSwitch in VMM.INC are the _PageModify and _PageModifyPermissions functions.
Having found the _ContextSwitch routine in VMM, you can see that somewhere, Windows 95 must be keeping around a set of page mappings for each memory context, as well as a count of the number of page directory entries. As luck would have it, I can verify this with the SoftIce/W Addr command.
  
:addr
Handle    PGTPTR    Tables  Min Addr  Max Addr  Owner
C0FE7AA4  C0FEAB7C  0003    00400000  7FFFF000  KERNEL32
C0FEA8BC  C0FEE0FC  01FE    00400000  7FFFF000  MSGSRV32
C0FF905C  C0FF9070  0002    00400000  7FFFF000  FREECELL
C0FF222C  C0FF2358  0002    00400000  7FFFF000  WINMINE
C0FD4A40  C0FF2788  0002    00400000  7FFFF000  CHARMAP
C0FF1DA8  C0FF2314  0002    00400000  7FFFF000  HEAPWALK
C0FF0188  C0FF13D8  01FE    00400000  7FFFF000  EXPLORER
C0FEED08  C0FF320C  01FB    00400000  7FFFF000  WINOLDAP
C0FF2258  C0FF2A1C  01FB    00400000  7FFFF000  SNDVOL32
C0FEB61C  C0FEEEE4  0002    00400000  7FFFF000  MMTASK
C0FEB244  C0FEF5B8  01FE    00400000  7FFFF000  MPREXE
C1FCD030  C1FCD044  0002    00400000  7FFFF000
  
In the above list, the FREECELL, WINMINE, CHARMAP, and HEAPWALK programs are all 16-bit Windows-based programs. Interestingly, even though 16-bit programs can always see one another, Windows 95 treats them as separate processes and memory contexts. However, this is a moot point since the code and data segments in 16-bit programs are always loaded in the shared memory areas (0 – 4MB and above 2GB). Thus, 16-bit programs can always see each other, even though they technically have different address contexts.
All the remaining processes in the Addr list are either 32-bit or unknown. The column labeled Tables is somewhat misleading, as it’s actually the number of page directory entries that make up the memory context. Each page directory maps 1024 page tables, each of which maps a 4KB region. Thus, each page directory entry corresponds to 4MB of linear address space. Notice how the 16-bit programs only use up two page table entries. This is because 16-bit programs have no need for memory in the Win32 per-process data area (0x00400000 – 0x7FFFFFFF). Win32 processes, on the other hand, need to have separate page mappings for that entire range, even if most of the pages are marked not-present.
Digging Deeper
If you’re interested in digging deeper into Windows 95 memory contexts, the DDK is indispensable. The DDK doesn’t try to hide much of anything from the programmer. The DDK says that memory contexts are created by _ContextCreate in VMM.VXD and destroyed by _ContextDestroy.
Some other cool VMM functions to check out are _CopyPageTable and _PageAttach. _CopyPageTable lets you obtain the logical to physical mappings for a memory context without going into the page. The _PageAttach function documentation describes how it’s used to make memory in one context map to the same linear address in another context. This is the mechanism by which Windows 95 shares code and data between multiple copies of a process.                                                                              
In this article, I haven’t even attempted to talk about the Windows 95 memory management APIs like VirtualAlloc, HeapAlloc, or LocalAlloc. These APIs break down into three categories: the virtual memory functions, the HeapXxx functions, and the Global/Local heap functions. Each of these categories could easily be the topic of a separate article, so I won’t try to rush through them here. The Windows 95 versions of these functions don’t differ significantly in behavior from Windows NT. My forthcoming book on Windows 95 system programming will cover the Windows 95 memory management API functions in detail. 
Instead of examining the APIs, I’ve focused on laying a groundwork for understanding how Windows 95-based programs affect memory and are affected by memory. The two most important things that you’ll want to be familiar with as you transition from Windows 3.1 to Windows 95 are paging and memory contexts. Paging affects much of the system’s behavior and how your programs use memory (as compared to in Windows 3.1). Memory contexts are important to understand so that your programs can be good citizens of a multitasking world. 


